
www.manaraa.com

Retrospective Theses and Dissertations Iowa State University Capstones, Theses and
Dissertations

2008

Manufacturability analysis for non-feature-based
objects
Ye Li
Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/rtd

Part of the Industrial Engineering Commons, and the Mechanical Engineering Commons

This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University
Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University
Digital Repository. For more information, please contact digirep@iastate.edu.

Recommended Citation
Li, Ye, "Manufacturability analysis for non-feature-based objects" (2008). Retrospective Theses and Dissertations. 15690.
https://lib.dr.iastate.edu/rtd/15690

http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Frtd%2F15690&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Frtd%2F15690&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd?utm_source=lib.dr.iastate.edu%2Frtd%2F15690&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Frtd%2F15690&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Frtd%2F15690&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd?utm_source=lib.dr.iastate.edu%2Frtd%2F15690&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/307?utm_source=lib.dr.iastate.edu%2Frtd%2F15690&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/293?utm_source=lib.dr.iastate.edu%2Frtd%2F15690&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd/15690?utm_source=lib.dr.iastate.edu%2Frtd%2F15690&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu


www.manaraa.com

Manufacturability analysis for non-feature-based objects 
 
 
 

by 
 
 

Ye Li 
 
 
 
 

A dissertation submitted to the graduate faculty 
 

in partial fulfillment of the requirements for the degree of 
 

DOCTOR OF PHILOSOPHY 
 
 
 
 
 

Major:  Industrial Engineering  
 

Program of Study Committee: 
Matthew C. Frank, Major Professor 

Frank E. Peters  
Douglas D. Gemmill  
Palaniappa A. Molian 

Eliot H. Winer 
 

 
 
 
 
 
 
 

Iowa State University 
 

Ames, Iowa 
 

2008 
 

Copyright © Ye Li, 2008.  All rights reserved. 



www.manaraa.com

3316207 
     

3316207 
 2008



www.manaraa.com

 ii

TABLE OF CONTENTS 

 
ABSTRACT iv 
 
CHAPTER 1. GENERAL INTRODUCTION                                                                          1 
            Introduction 1 
            Research Motivation                                                                                                       5 
            Research Objectives 6 
            Dissertation Organization 7 
 
CHAPTER 2. LITERATURE REVIEW                                                               8 
            Feature-Based Manufacturing and Non-Feature-Based Manufacturing 8 
            Rapid Prototyping and Manufacturing          12 
            Design for Manufacturing and Re-Design 14  
            Machinability and Visibility 17 
 
CHAPTER 3. COMPUTING NON-VISIBILITY OF CONVEX POLYGONAL  

FACETS ON THE SURFACE OF A POLYHEDRAL CAD MODEL 21 
            Abstract 21 
            Introduction 21 
            Related Work 22 
            Non-Visibility of a Polygonal Facet 23 
            Determination of Sliding Planes 32 
            Implementation 39 
            Computational Results 44 
            Conclusion 46 
            References 46 
 
CHAPTER 4. COMPUTING AXES OF ROTATION FOR SETUP PLANNING  

USING VISIBILITY OF POLYHEDRAL CAD MODELS 50 
            Abstract 50 
            Introduction 50 
            Literature Review 53 
            Visibility 55 
            From Visibility to Axis of Rotation 56 
            Computing Axes of Rotation 59 
            Implementation 64 
            Conclusion 70 
            References 70 
 



www.manaraa.com

 iii

CHAPTER 5. MACHINABILITY ANALYSIS FOR 3-AXIS FLAT END MILLING 73 
            Abstract 73 
            Introduction 73 
            Definitions 79 
            Machinability Analysis 81 
            Implementation 94 
            Conclusions and Future Research 99 
            References 100 
 
CHAPTER 6. FUTURE WORK AND CONCLUSION 103 
            Future Work 103 
            Conclusion 108 
 
REFERENCES 110 
 
ACKNOWLEDGEMENTS 117 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



www.manaraa.com

 iv

ABSTRACT 

 
This dissertation presents a general methodology for evaluating key manufacturability 

indicators using an approach that does not require feature recognition, or feature-based 

design input.   The contributions involve methods for computing three manufacturability 

indicators that can be applied in a hierarchical manner. The analysis begins with the 

computation of visibility, which determines the potential manufacturability of a part using 

material removal processes such as CNC machining. This manufacturability indicator is 

purely based on accessibility, without considering the actual machine setup and tooling.  

Then, the analysis becomes more specific by analyzing the complexity in setup planning for 

the part; i.e. how the part geometry can be oriented to a cutting tool in an accessible manner. 

This indicator establishes if the part geometry is accessible about an axis of rotation, namely, 

whether it can be manufactured on a 4th-axis indexed machining system. The third indicator 

is geometric machinability, which is computed for each machining operation to indicate the 

actual manufacturability when employing a cutting tool with specific shape and size.  The 

three manufacturability indicators presented in this dissertation are usable as steps in a 

process; however they can be executed alone or hierarchically in order to render 

manufacturability information. At the end of this dissertation, a Multi-Layered Visibility Map 

is proposed, which would serve as a re-design mechanism that can guide a part design toward 

increased manufacturability.  
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CHAPTER 1.  GENERAL INTRODUCTION 

Introduction 

Manufacturability refers to the relative difficulty in the process of physically 

converting raw material into a finished product on machines according to a design 

specification. Manufacturability of a product design has become an important issue due to the 

historic barriers between the design and manufacturing departments in a company. When a 

designer creates a design model, the major focus is to make the design optimal from 

functional or aesthetics perspectives that may not be agreeable to manufacturing engineers. 

This could lead to difficulty in manufacturing practices and even cause rework effort in the 

modification of designs to improve manufacturability. This creates waste in modern industry; 

both extending time to market for new products, and/or slowing the creation of finished 

products from raw materials if the design changes are not completed correctly, if at all. 

As an important issue in product design, manufacturability significantly influences 

production cost and lead time, which are characteristics of manufacturing industry 

competitiveness. Research has shown that around 70% of the cost of a product has been 

determined at the design stage; improper design features may become irreversible limitations 

when it comes to the manufacturing stage. Therefore the importance of manufacturability 

analysis has been widely recognized by both the academic community and industry. 

Extensive effort has been dedicated to manufacturability analysis, where analytic methods 

were applied to investigate the manufacturability of a product design and the results are then 

fed back to the designer (Fig. 1.1). Manufacturability analysis has become a key component 

in implementing concurrent engineering as it simultaneously takes into account 

manufacturing issues in the design stage. Manufacturability analysis has a broad scope of 

research topics, such as accessibility, fixturability, tooling, quality, cost, assembly etc. 

Depending on the specific application, the objective in manufacturability analysis could be 
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one or a combination of these measures.   

 

 

 

 

 

 

 

 

 

 

 

 

Manufacturability analysis has experienced three stages of development, coinciding 

with the advancement of computational techniques and the growth of industry need. These 

three stages are: (1) general design for manufacturability guidelines; (2) feature-based 

manufacturability analysis, and most recently (3) Non feature-based analysis.     

Design for manufacturability guidelines came about after it was realized that 

traditional “over-the-wall” design could create downstream issues.  Within a manufacturing 

company, the design and manufacturing departments have sometimes been two stand-alone 

departments. To address this challenge, guidelines that enabled design for manufacturability 

had been proposed in the form of general rules of thumb that were gained from the 

experiences of manufacturing practitioners. These guidelines suggested easy and economical 

design features, and were used as references by designers so that manufacturability is 

considered early in product design. With these guidelines, a designer had a better 

understanding of manufacturing; therefore difficulty of manufacturing could be significantly 

reduced. The implementation of design for manufacturability guidelines relies extensively on 

Manufacturing 

Engineer 
Designer 

Manufacturability 

Analysis

Feedback 

How to fixture 
it?

What machines 
to use? What orientation 

to hold it?

Fig.1.1 Manufacturability analysis 
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the experience of the design engineers. Unfortunately, these guidelines rely heavily on the 

skill of the designer using them; hence, improvements are highly variable.       

The advent of computer technology offered the opportunity of automating the process 

of analyzing the manufacturability of a product design. This is primarily realized through a 

process called feature recognition. A feature is an aggregate of geometric entities that 

together convey a geometric meaning in both product design and manufacturing. Through 

feature recognition, the relation between design features and manufacturing processes are 

identified. The example shown in Fig. 1.2 illustrates the process of manufacturability of a 

prismatic model, where there is one pocket feature and four hole features. Through 

recognition, these features are identified and mapped to one pocket milling operation and 

four drilling operations. Since this manufacturability analysis relies on feature recognition, it 

is obviously imperative that the design model is described using features. This imposes a 

constraint on the capability of feature-based manufacturability analysis whereby non 

feature-based models cannot be processed. On a non feature-based model, almost no 

traditional recognizable feature exists; therefore the mapping mechanism from design 

4 х4 х

Hole

Pocket

Geometric Model
Feature 

Recognition Process Planning

Fig.1.2 Manufacturability analysis for feature-based models 
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features to manufacturing features does not work. To process non feature-based models, a 

new manufacturability analysis approach is needed that can do away the feature-recognition 

process.   

Non feature-based manufacturability analysis stems from the need to handle non 

feature-based geometric models, which are becoming increasingly prevalent. The most 

prominent application is in biomedical engineering where the surfaces studied are from bones, 

organs and other tissue (Fig. 1.3). These CAD models are typically re-constructed from 

medical image data such as computed tomography (CT) and magnetic resonance imaging 

(MRI).  As bio-manufacturing is currently becoming a new frontier in manufacturing 

research sought by both industry and the academic community, methodologies for 

manufacturability analysis should be able to accommodate these new challenges. 

A second application is in the bridge between art and manufacturing where an artist 

manually creates a sculptured model (Fig. 1.4) and then uses reverse engineering techniques 

to scan the surface to construct a CAD model.   

 

 

 

 

 

 

 

 

One viable way to make non feature-based objects is to use Rapid Prototyping 

processes. Rapid Prototyping, also known as Layered Manufacturing, generally refers to 

techniques that can create a 3-D object through the process of successively building and 

stacking 2-D layers of material. By doing so, the complexity of constructing 3-D objects is 

made simpler; thus human effort of process planning, tooling preparation and fabrication are 

Fig.1.3 Bio-based models (hip 

joint) 

Fig.1.4 Artistic models  

(sculpture) 
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almost eliminated. The layered nature of Rapid Prototyping also simplifies complexity of 

manufacturability analysis because 3-D manufacturability is reduced into 2-D 

manufacturability on each layer. However rapid prototyping processes are limited in both 

materials and accuracy; therefore, they mostly limited to prototype models rather than 

functional components. 

Computer Numerical Controlled (CNC) machining has received some attention as a 

possible method for realizing the Rapid Prototyping of functional parts.  They offer high 

precision, low cost, and widely available functional materials [Hassold 1995, Schmidt 1997, 

Wang et al. 1999, Frank et al. 2002, Frank et al. 2003]. Currently many analysis tools exist 

for evaluating the machinability of a feature-based design. Representative research related to 

feature-based machining are reviewd in the work of Gupta et al. [Gupta et al. 1997]. 

However, little or no research specifically addresses manufacturability analysis without the 

direct use of features or feature recognition.  Current Computer Aided Manufacturing 

(CAM) software is readily capable of generating toolpaths given a set of surfaces of a part 

and a cutting orientation (3-axis machining); however, it is not designed to calculate 

geometric machinability. If non-machinable regions could be identified, the actual machined 

surfaces can be computed and presented as feedback to a designer.  

Research Motivation 

Traditional Design for Manufacture (DFM) methodologies rely heavily on feature 

recognition, which lends them incapable of processing increasingly prevalent non-feature 

based objects. The motivation behind this research is to extend design for manufacturability 

beyond the limitations of feature recognition, and develop a methodology to analyze the 

manufacturability of non-feature based objects, in particular, for material removal processes 

such as CNC machining.  With this non feature-based manufacturability analysis, a designer 

can receive feedback that consists of three types of manufacturability: potential 

manufacturability, manufacturability specific to a machine setup, and manufacturability 
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specific to a cutting tool. The potential manufacturability does not rely on a machine setup, 

but is purely the manufacturability of the design from the standpoint of accessibility. This 

result will inform a designer whether or not the geometric model can be potential produced 

by a material removal processes, regardless of the actual tooling used. For the second type, 

the manufacturability specific to a machine setup will present the actual manufacturability on 

a chosen machine fixture. Each machine has an inherent constraint on accessibility due to its 

kinematic structure. A 5-axis machine has more accessibility then a 4-axis machine, and a 4 

axis machine better than a 3-axis machine. Mathematically, manufacturability specific to a 

machine setup is a subset of the potential manufacturability. Moreover, the third type of 

manufacturability pertains to the shape and size of a specific cutting tool. This 

manufacturability is also called geometric machinability.  

These three types of manufacturability hierarchically analyze the actual 

manufacturability of a non feature-based model, and inform the designer with three different 

levels of knowledge. The designer can then perform re-design with respect to those 

feedbacks on each level, accordingly.  

Research Objectives 

The primary objective of this dissertation is to develop a methodology to, in  a 

hierarchical manner, analyze the manufacturability of non-feature based objects, based on 

material removal processes such as CNC machining. To achieve this major objective, the 

following sub-objectives are presented: 

      1) The first sub-objective is to develop a method of computing visibility for 

polyhedral CAD models. The visibility computed is global visibility, and will be used to 

represent potential manufacturability. Moreover the input will accommodate arbitrary 

convex polygonal facetted models. 
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      2) The second sub-objective is to develop a method of computing feasible workpiece 

set-up orientations for machining non feature-based models using a 4-axis indexed rapid 

machining set-up. This corresponds to the manufacturability specific to a machine setup.   

      3) The third sub-objective is to develop a geometric machinability method that can 

analyze a non feature-based model and precisely predict the coordinate locations of 

un-machinable regions, taking into account the shape and size of a flat-end milling tool. This 

corresponds to manufacturability specific to a cutting tool. 

Dissertation Organization 

The remainder of this dissertation is organized as follows: Chapter two presents a 

discussion of the relevant literature.  Chapters three to five are comprised of three Journal 

publications or submissions, where each paper presents one of the 3 sub-objectives of this 

work.  Finally, chapter six presents future research opportunities and conclusions from this 

research. 
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CHAPTER 2.  LITERATURE REVIEW 

Feature-Based Manufacturing and Non-Feature-Based 

Manufacturing 

Feature-based technology is widely used in manufacturing process planning. Boosted 

by the computational power from the advancement of computer technology, feature-based 

technology is automated and has established its important role in integrated product 

development over the past two decades. A feature consists of a collection of geometric 

entities that together pass on meaningful content from upstream to downstream in a 

production realization environment. The use of a feature is intended to link product designs 

created in a CAD system to manufacturing process planning activities. For example a hole 

created in a product model may be mapped as a drilling process, or a pocket mapped to a 

milling process. This enables a high level of communication between a designer and a 

process planner and also among designers in a collaborative design environment. As such, 

information transferred is therefore not based on basic surface patches but on those 

meaningful unit features. In addition to the information provided by a feature, the 

representation of a feature uses parametric formation, which allows users to create or edit a 

feature by changing its parameters.  Most commercial CAD/CAM software, such as 

Solidworks, Pro-E, MasterCam, etc., contains functional modules that can assist users to 

create or edit feature-based models.  

Given a feature-based model, manufacturability analysis can be carried out provided 

that those features are identified. The process of extracting features from a feature-based 

model is called feature recognition. Feature recognition is the first step in performing any 

feature-based analysis. A number of reviews on feature recognition can be found in [Allada 

and Anand 1995, 1996; Miao et al, 2002; Salomons et al, 1993; Zulkifli and Meeran 1999]. 

With features successfully recognized, design information becomes interpretable in the 

manufacturing stage, which facilitates concurrent engineering and thus speeds up the product 

development cycle.   
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The recognized features on a design model and their interrelation make the design 

description ready for tasks such as machining setup planning. Ferreira and Liu developed a 

rule-based system to generate setup orientations for workpieces described with features 

[Ferreira and Liu 1988]. Demey et al, determined the minimal number of setups, considering 

both the physical conditions and the economical and quality issues [Demey et al, 1996]. Chu 

and Gadh classified features into single approach direction features and multi approach 

direction features, and then determined the minimized number of setups along with 

knowledge-based rules [Chu and Gadh 1996]. Built upon the interpretable information 

carried by feature-based models, researchers have enriched rule-based approaches with user-

intended objectives or techniques, and therefore provided the integration of human 

knowledge into feature-based manufacturing process planning. In determining setup 

orientations, feature-based workpieces also receive consideration of other physical 

constraints coming from machine configurations and fixturing devices [Cevdet 2004]. Wu 

and Chang developed an automated setup selection method based on tolerance analysis [Wu 

and Chang 1998]. The setups are ranked and then released for fixture selection.  Yen et al, 

integrated setup planning with geometric positioning and tolerancing for fixture planning 

[Yen et al, 2001]. To meet the constraints imposed on setup planning from machine 

capabilities and design information, a number of techniques such as fuzzy-set [Ong and Nee 

1996] and GA and SA [Ong et al, 2002] have been used in searching for optimal solutions.  

The primary reason for using feature-based approaches owes somewhat to the fact 

that most designs, particularly those for mechanical parts, are geometrically composed of 

features. However the increasing need to handle freeform shapes such as those reconstructed 

from reverse engineering techniques (e.g. laser scanning, CT and MRI scanning) pose new 

challenges to manufacturing process planning. On those freeform shapes, there may be no 

definable “features”, which lends feature-based approaches incapable. Since the primary 

concern of setup planning for material removal processes is to provide accessibility for the 

cutting tool, researchers identified accessibility as the necessary condition of 

manufacturability and have used it to extract setup planning through geometric operations. 

For feature-based models, feature accessibility can be checked by calculating the feature 

accessibility volume and testing the intersection of the feature accessibility volume with the 
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part [Regli 1995, Regli et al 1995, and Gupta and Nau 1995]. For non-feature-based 

geometries, visibility is generally used as the approximation of accessibility because the 

method of computing feature accessibility volume is not applicable to non-feature-based 

models. Therefore it is important to determine the visibility for non-feature-based models.  

Visibility can be categorized into two classes: local visibility and global visibility. Gan et al, 

constructed a visibility map from a Gaussian map [Gan et al, 1994]. The visibility map 

constructed from a Gaussian map was used to compute setup orientations for 4- and 5- axis 

machining [Tang et al, 1992; Chen et al, 1993; Haghpassand and Oliver 1995]. For the 

example of 4-axis milling, a feasible setup orientation should be one that allows a great circle 

orthogonal to it to intersect all spherical visibility polygons. However the visibility 

constructed from Gaussian maps is local visibility that cannot guarantee global accessibility. 

In manufacturing process planning, particularly for machining processes, global visibility is 

required to avoid collision of the cutting tool with the workpiece. Suh and Kang used a 

discretized model to construct global visibility and a similar method to find a feasible setup 

orientation for 4-axis milling [Suh and Kang 1995]. Dhaliwal et al, computed accurate non-

visibility for an object represented by triangular facets by projection and convex hull 

operations [Dhaliwal et al, 2003]. Balasubramaniam et al, used graphic techniques to obtain 

visibility information [Balasubramaniam et al, 2000]. 

A second limitation of feature-based approaches lies in the constraint imposed by the 

concept a feature itself. In feature-based approaches, a manufacturable feature requires that 

all surfaces constituting the feature be completely machined from one cutting orientation; 

otherwise that feature will be considered non-manufacturable if such a direction does not 

exist. Though feature-based approaches are effective in determining manufacturability, the 

constraint they impose actually rules out the possibility of completely machining a feature 

from a combination of two or more directions, which would provide flexibility and increased 

solution space in planning machining process. Non-feature based process planning intends to 

more extensively explore the solution space by breaking each feature into finer constituting 

elements and performing the analysis on those elements. Mukerjee and Jain [Mukerjee and 

Jain 1997] proposed a featureless Computer Aided Process Planning (CAPP) model where 

process planning is done before feature recognition. The authors intended to generate more 
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choice of process sequences by implementing the featureless CAPP model. Frank et. al. 

[Frank et. al. 2006] analyzed 2D global visibility on Stereolithography (STL) slices where 

the basic elements are those line segments comprising of the sliced chain. The necessary 

machining orientations are searched for 4th axis indexable machining by executing a Greedy 

search algorithm.  

In addition to exploring in an increased solution space, non-feature-based approaches 

are fundamentally capable of processing non-feature-based geometric models since all 

analysis are performed on the basic elements constituting the models, not requiring feature 

recognition.  Since there are few definable features existing on non-feature-based models, 

feature representation is not able to describe non-feature-based models. One feasible way of 

describing non-feature-based geometries is to use polygonal models. One common form of 

polygonal model is an STL model, which is created through tessellating a geometric model 

into a triangular-facetted model. The non-feature-based analysis can then be performed on 

the triangular facets that constitute the surfaces of a non-feature-based model.  Dhaliwal et al, 

computed non-visibility for the triangular facets of an STL model [Dhaliwal et al, 2003]. Li 

and Frank [Li and Frank 2007] extended the non-visibility computation for geometric models 

comprised of arbitrary polygonal facets. Frank et. al. [Frank et. al. 2006] computed the 

visibility of a sliced STL model and searched the necessary machining orientations for a 4-

axis indexed rapid machining setup. Li and Frank [Li and Frank 2008] used the visibility 

computed from each facet to search the feasible axes of rotation for the 4-axis indexed rapid 

machining setup.   

There are certainly advantages if a feature based model can be used, or if features can 

be recognized and utilized in process planning.  However, feature based design and 

manufacturing planning can be not only difficult, but can also pose unintended restrictions on 

process planning solutions.  Non feature based process planning cannot take advantage of the 

parametric forms of, and increased information available when features are used; however, 

research has shown that they can provide improved flexibility and variety in process planning 

solutions.   
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Rapid Prototyping and Manufacturing 

The advent and growth of rapid prototyping come from a substantial demand of 

human-effort-less rapid creation of 3-D parts directly from CAD design to speedup product 

development process. Ever since 1980’s, numerous processes have emerged as feasible 

approaches for executing the task of rapid prototyping. One major reason behind the 

innovation of rapid prototyping processes is due to the lack of a true integration of 

CAD/CAM related to CNC machining [Yan and Gu 1996]. Inspired by the simplified manner 

of building 3-D objects through stacking 2.5 D layers, people are desiring a similar way of 

producing functional parts, a process called rapid manufacturing.  

Although rapid prototyping processes free designers from manufacturing constraints 

by doing away with the need of preparing tooling, the staircase inherent with these layer-

based processes generates undesired surface finish and is strongly dependent on the building 

direction. The error from the staircase can be represented by either cusp height, the maximum 

distance of manufactured part surface perpendicular to the CAD model surface [Alexander et 

al. 1998], or volumetric error, the difference of the volume of the material used to create the 

part with the volume determined by the CAD model [Masood and Rattanawong 2002].   

Rapid prototyping processes are broadly divided into two categories from a process 

standpoint: material addition and material removal [Pham and Gault 1998]. Representative 

material additive processes include Stereolithography (SLA), Fused Deposition Modeling 

(FDM), Laminated Object Manufacturing (LOM), Selective Laser Sintering (SLS), Ballistic 

Particle Manufacturing (BPM), Three Dimensional Printing (3DP), and laser-engineered net 

shaping (LENS). Rapid prototyping by material removal refers to the application of CNC 

machining in a rapid manner. Shape deposition manufacturing (SDM) is a hybrid process 

combining both material addition and removal [Merz et al 1994]. According to the material 

used, these processes can also be classified into metallic fabrication process and non-metallic 

fabrication process. It has been found that materials used for rapid prototyping are limited 

and are not suited for making functional parts for intended physical environments in most 

cases. In addition to that, material properties of some RP parts are not well understood yet. 

SLA and FDM produce parts from plastic materials. Hague et al. [Hague et al. 2004] found 

that SLA process produces isotropic parts and material properties do not demonstrate a clear 
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relation with the variation of building direction. Montero et. al.[ Montero et. al. 2001] 

discovered the anisotropic properties of parts made by FDM.  Hague et al. [Hague et al. 

2004] also reported that the material property of SLS parts is found to be anisotropic through 

experiment study. Such an experiment result is complying with the works of Gibson and Shi 

[Gibson and Shi 1997] and Hur et al. [Hur et al. 2001]. The materials used for BPM are 

limited and should be easily melt, like wax, thermoplastics and aluminum [Yan and Gu 

1996]. Although some rapid prototyping processes can use metallic materials, the parts 

produced are inferior compared with conventional processes in surface roughness and 

dimensional accuracy, and therefore need post processing. LOM can produce parts for the 

application of Rapid Tooling from metal rolls in addition to the materials like paper, plastic 

and composite. However a post machining process is needed to smooth the staircases.  SLS 

parts demonstrate undesired surface roughness, and the shrinkage and distortion are the 

factors keeping SLS from making accuracy parts. LENS also suffers from its limited spatial 

resolution or accuracy, rendering it a near net shape process [Levy et. al. 2003]. 3DP is now 

available to make metal parts, however the accuracy is impaired by its second operation 

[Radstok 1999].   

Rapid Tooling (RT) is a technical extension of rapid prototyping intended to innovate 

tool-making in order to shorten time-to-market from a production stand point. Rapid Tooling 

takes the tool-less advantage of rapid prototyping and aims to apply the prototypes produced 

by rapid prototyping in making tool to reduce lead-time of production. Rapid Tooling 

produces tool, the critical means of production, and therefore is actually a production-

oriented pre-manufacturing stage. Rapid Tooling can be devided into two classes: non-direct 

tooling, by which prototypes are not used as production tools but need other processes to 

produce tools, and direct tooling whereby rapid prototyping provides prototypes as tools 

directly [Karapatis et. al. 1998]. Although Rapid Tooling provides profits for production, it is 

not economically justifiable for rapid manufacturing where production quantity is very low. 

Since rapid tools are produced from materials and processes significantly different from 

those traditional processes, Rapid Tooling are faced with such challenges as accuracy, 

durability, and quantity and quality of the parts [Segal and Campbell, 2001].   
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Recently, CNC machining have been paid increasing attention to as widely available 

processes to rapidly manufacture prototype or even functional parts, for the high precision, 

low cost, and widely available materials [Hassold 1995, Schmidt 1997, Wang et al. 1999, 

Frank et al. 2002, Frank et al. 2003]. Relvas and Simoes‘s study [Relvas and Simoes 2004] 

shows the competency of CNC machining in dimensional deviations, time and expenses, 

compared with material additive processes including SLS, SLA and LOM. However the 

biggest challenge for using CNC machining for rapid manufacturing lies in fixturing [Wang 

et al. 1999, Frank et al. 2002].  Sarma and Wright [Sarma and Wright 1997] presented 

reference free part encapsulation (RFPE) as a universal fixturing approach. Choi et al. [Choi 

et al. 2001] implemented RFPE, and developed a feature-based CAD/CAM system for an 

encapsulation system. As a new Phase-change fixturing method, RFPE solved the problem of 

losing location datum when more than one setup is necessary in machining the part. 

Bandyopadhyay et al. [Bandyopadhyay et al. 1993] developed a fixture-free machining 

center for machining block-like component, whereby a specially designed workpiece-holding 

device allows bar-form material to be fed automatically and positioned for unattended 

machining of all the six faces of the block-like components. Frank et. al. [Frank et. al. 2004] 

fixtured workpiece automatically for a 4 axis indexer rapid machining set-up through the use 

of sacrificial supports. Such sacrificial supports added to the ends of CAD model are created 

in-process during machining and are finally removed after all operations are completed.  

Design for Manufacturing and Re-Design 

Design for Manufacturing (DFM) is a philosophy that ushers a designer to a good 

design from a manufacturing perspective. The concept of DFM breaks the isolation between 

design and manufacturing by simultaneously considering manufacturing constraints in the 

design stage. DFM is conceptually an alternative solution, conducted earlier in design stage, 

to the problems that may occur later in manufacturing stages. Implementation of DFM has 

been shown to lead to a great amount of economic benefits, and has received considerable 

attention since 1970’s [Boothroyd, 1993]. DFM was also contended as a competitive 

alternative choice to avoid heavily investing in automated equipments [Fabricius 1994].  
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The research scope of DFM is not quite clear, like the word manufacturing. Narrowly 

speaking, it concerns manufacturing processes for creating a design; broadly it covers nearly 

all aspects of product development cycle [Polo 2001, Stoll 1986]. Taylor [Taylor1997] 

discussed the strategies for DFM in multi-facility and global manufacturing context.   The 

principles of DFM are very process specific. Usually principles of one process cannot be 

transplanted to another one. Polo 2001 [Polo 2001] and Bralla [Bralla 1986] gave DFM 

guidelines of nearly all traditional manufacturing processes. CNC machining as a major 

manufacturing process was also provided with DFM guidelines by Hodgson and Pitts 

[Hodgson and Pitts 1991].  The guidelines centers on minimizing the number of set-up, tool 

used and transfers between machines. 

One approach for implement DFM in design activities is to visually inspect a design 

drawing against a checklist as the one provided by Bralla [Bralla 1986].  Such a manual 

inspection is very experience-dependent and may have problem when a design is getting 

complex. Stauffer et al. [Stauffer et al. 2003] presented a useful template for organizing and 

presenting DFM guidelines. Fabricius [Fabricius 1994] reported a seven-step DFM procedure 

that could reduce 25-30 percent manufacturing cost. Barton et al. [Barton et al. 1996] 

developed database architecture and a statistical modeling methodology that can incorporate 

manufacturing experience and update DFM design rules. The advance of computer 

technology allows the description, reasoning and manipulation of a design on computer. 

Assisted by computer technology, DFM is no longer a manual and experience-dependent 

practice, but can be made automated and integrated into CAD/CAM systems. A feature as a 

set of correlated geometric elements is of considerable significance to the integration of 

design and manufacturing. The concept of feature also benefits the implementation of DFM. 

Mill et al. [Mill et al. 1994] developed a simultaneous workstation to discover problems that 

may rise from machining operations in a feature-based design. Dumitrescu and Szecsi 

[Dumitrescu and Szecsi 2002] described a DFM implementation system that can analyze 

design features, map those features to manufacturing features, and check manufacturability. 

This DFM system takes into account materials, production types, surface finishes, tolerances 

and manufacturing processes.  
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The computational resources provided by computers allow the application of many 

techniques to promote the practice of DFM. S.Wesley and Li [S.Wesley and Li 1996] 

discussed a design critique system for rotational parts using knowledge-based language.   

Fauvel [Fauvel 1994] described an information model that allows concurrent 

manufacturability analysis.  Ong et al. [Ong et al. 2003] used fuzzy set to evaluate the 

relative ease or difficulty of machining features in design; an analytic hierarchy process 

(AHP) method is employed to assign weighting factors. Liu et al [Liu et al.1995] proposed a 

fuzzy logic expert system, SMARTDFM, to address machining aspects in the early stage of 

product design. Huang and Mak [Huang and Mak 1999] demonstrated a web-based DFMA 

technique.  

Since manufacturing actually addresses many issues, each of which targets different 

objectives, a DFM methodology may have its objective shifted to one specific aspect of 

manufacturing. Design for economic manufacture [Corbett 1986] pay attention to the cost 

issue of manufacturing and looks for the most economic way to produce a design. Design for 

life cycle manufacture [Stoll 1997] studies DFM philosophy at all stages of the engineering 

design process. Lenau [Lenau 1996] studied early selection of processes and materials in 

DFM and describe a computer-based tool called Designers Manufacturing Inspirator for a 

designer to examine materials/processes. Ji and Lau [Ji and Lau 1999] discussed dimensional 

aspect in DFM/Concurrent Engineering environment. Taylor [Taylor 1997] introduced 

design for global manufacturing and assembly (DFGMA) as a tool for assisting a designer to 

make decisions holistically.  

Redesign is an important constitutional component of DFM. Redesign is a process 

aiming at improving or correcting an existing design that violates DFM rules.  The output of 

redesigning process is either a better or remedied design complying with DFM rules. 

Artificial Intelligence (AI) has been applied in generating redesign suggestions. Desa et al. 

[Desa et al. 1987] described methods for system redesign of an engineering product and 

created a simple expert system to implement it. Adalier and Tsatsoulis [Adalier and 

Tsatsoulis 1992] developed an intelligent system called REINRED based on the concept of 

case based reasoning to realize redesign for manufacturability. So far most redesign 

approaches depend on feature-based analysis. Hayes and Gaines [Hayes and Gaines 1996] 
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generated design alternatives and looked for one of them with more manufacturability. The 

design alternatives are generated through feature recognition process. Das et al. [Das et al. 

1996] generated redesign suggestions to reduce set-up time by offering alternative 

manufacturing features while satisfying a designer’s intent. Hayes [Hayes 1996] described a 

plan-based design advisor that takes a feature-based design, generates manufacturing plan 

and provides suggestions to redesign shapes to reduce manufacturing cost. Zhou and Gaines 

[Zhou and Gaines 2003] developed an automated redesign for machined parts (Arm) that can 

identify non-machinable shapes of a feature-based design and can transform them into 

machinable features, whereby manufacturability of a design is increased.   

Manufacturability can also be improved from other design aspects. Lin et al. [Lin et 

al.2003] substituted the dimension tolerance of a design with an alternative one to obtain 

improved manufacturability of machining process, with design functionality not 

compromised.  

Machinability and Visibility 

Machinability analysis is taking an increasingly important role as complex surfaces 

are used in the design of a wide variety of parts. Current Computer Aided Manufacturing 

(CAM) software is readily capable of generating toolpaths given a set of surfaces of a part 

and a cutting orientation (3-axis machining). However, determining the setup orientation can 

be difficult and moreover, it may be very challenging to determine if the part can be created 

using machining at all. An appropriate setup orientation can guarantee an effective cutting of 

the surface, while an inappropriate one will leave too much material in certain regions.  

Many researchers have studied machinability analysis and its closely related 

workpiece setup problem. Most of the approaches are based on visibility, which is essentially 

line of light accessibility. Su and Mukerjee [Su and Mukerjee 1991] presented a method to 

determine machinability of polyhedral objects. A convex enclosing object is constructed to 

make each face of the part orthogonally visible to the planes of the enclosing object. The part 

is then considered to be machinable from the normal-vector directions of the enclosing object 

planes. Later, computational geometry on the sphere was utilized to analyze visibility by 

Chen and Woo [Chen and Woo 1992] who performed pioneering work on computational 
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geometry algorithms that could be used for determining workpiece set-up and machine 

selection. Tang et al. [Tang et al. 1992] formulated the problem of workpiece orientation as 

finding the maximum intersection of spherical polygons. Gan et al. [Gan et al. 1994] 

discussed the properties and construction of spherical maps and presented an efficient way to 

compute a visibility map from a Gaussian map. Chen et al. [Chen et al. 1993] partitioned the 

sphere by spherically convex polygons to solve the geometric problem of determining an 

optimal workpiece orientation for 3-, 4- and 5-axis ball end milling. A visibility map is 

generated by using the normal vectors of a specified portion of the surface of a part, therefore 

it cannot guarantee global accessibility. Yang et al. [Yang et al. 1999] computed visibility 

cones based on convex hull analysis, instead of relying on visibility maps. Yin et al. [Yin et 

al. 2000] defined complete visibility and partial visibility, and presented a C-space based 

method for computing visibility cones. A sculptured surface is approximated by its convex 

hull [Yang et al. 1999] and the spherical algorithms [Chen and Woo 1992, Gan 1990] are 

used in the approach of Yin [Yin et al. 2000]. The convex hull may in some cases have a 

significant deviation from the true surface and therefore cannot guarantee a precise 

computation. Suh and Kang [Suh and Kang 1995] constructed a binary spherical map to 

compute the point visibility cone in order to algebraically solve machining configuration 

problems, including workpiece setup orientation. The part surface is decomposed into 

triangular patches. An occupancy test of the patches is conducted on a triangular-represented 

unit sphere to generate global visibility. Dhaliwal et. al. [Dhaliwal et. al.2003] presented a 

similar approach for computing global accessibility cones for polyhedral objects, but with 

exact mathematical conditions and algorithms. Balasubramaniam et al. [Balasubramaniam et 

al. 2000] analyzed visibility by using computer hardware (graphics cards). Frank et al. [Frank 

et al. 2006] analyzed 2D global visibility on STL slices and searched the necessary 

machining orientations for 4th axis indexable machining by executing a Greedy search 

algorithm. All these visibility-based approaches determine the necessary condition for 

machinability; however, they ignore tool geometry and therefore true accessibility 

(machinability) is not guaranteed. 

Su and Mukerjee [Su and Mukerjee 1991] took into account the cutter information by 

constructing a new part model through offsetting the original part surface by the amount of 
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the cutter radius. Machinability was further guaranteed by checking the topology of this 

offset part surface. This method is effective for the machinability analysis of a ball end 

cutter, but not for that of a flat end cutter, because the effective radius of a flat end cutter is 

variable with the change of tool tilting angle. Haghpassand and Oliver [Haghpassand and 

Oliver 1995] and Radzevich and Goodman [Radzevich and Goodman 2002] considered both 

part surface and tool geometry. However, tool size was not taken into account due to the fact 

that Gaussian mapping does not convey any size information of the part surface and/or the 

tool. Balasubramaniam et al. [Balasubramaniam et al. 2000, Balasubramaniam et al. 2003] 

verified tool posture from visibility results by collision detection before interpolating the 

toolpath for 5-axis machining.  

Over the past years, feature-based technologies have been an active field among the 

manufacturing research community. Regli[Regli 1995], Regli et. al. [Regli et al 1995], and 

Gupta and Nau [Gupta and Nau 1995] discussed feature accessibility and checked it by 

calculating the feature accessibility volume and testing the intersection of the feature 

accessibility volume with the part. Gupta and Nau [Gupta and Nau 1995] recognized all 

machining operations that could machine the part, generated operation plans, and checked 

and rated different plans according to design needs. A comprehensive survey paper on 

manufacturability by Gupta et al. [Gupta et al. 1997] reviewed representative feature-based 

manufacturability evaluation systems. Recently, Shen and Shah [Shen and Shah 1998] 

checked feature accessibility by classifying the feature faces and analyzing the degree of 

freedom between the removal volume and the workpiece. The MEDIATOR system reported 

by Gaines et al. [Gaines et al. 1999] used the knowledge of manufacturing equipment to 

identify manufacturing features on a part model. Accessibility is examined by testing the 

intersection of removal volumes with the part. Faraj [Faraj 2003] discussed the accessibility 

of both 2.5 D positive and negative features. Other researchers presented featured-based 

approaches to determine workpiece setups [Ferreira and Liu 1988, Demey et. al. 1996, Wu 

and Chang 1998, Ong et. al. 2002]. Although feature-based approaches are capable tools to 

handle feature-based design, they cannot lend themselves to free-form surfaces where 

definable features may not exist. In addition, feature-based approaches suggest that all the 

geometric elements comprising of a feature are treated together as an entity. This actually 
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imposes a constraint to the analysis of a part model. For example, it might be feasible to 

machine a portion of a part feature in one orientation and then finish the remaining surfaces 

of the feature in one or more successive orientations. 
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CHAPTER 3.  COMPUTING NON-VISIBILITY OF CONVEX 

POLYGONAL FACETS ON THE SURFACE OF A POLYHEDRAL CAD 

MODEL 
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Abstract  

Visibility has found wide applications in manufacturing operations planning and 

computer vision and graphics. The motivation of this paper is to accurately calculate 

visibility for objects whose surface is represented by polygonal facets. In this paper, the 

authors focus on determining non-visibility cones, which are the complementary sets of 

visibility.  This is accomplished by determining sliding planes that comprise the boundaries 

of a non-visibility cone. The approach presented in this paper directly evaluates the 

boundaries of the non-visibility cone of an arbitrary convex planar polygon due to the 

visibility blocked by obstacle polygons.   The method is capable of calculating visibility for 

convex polygons with any number of sides, not limited to triangular facetted models. 

Implementation is demonstrated in this paper for three to six sided polygonal models. 

1. Introduction 

The concept of visibility is based on line of sight accessibility.  Visibility describes 

the reachability of light rays to the surface of an object, and has become an important 

characteristic for analyzing a surface. Visibility analysis of an object has found applications 

in a wide variety of manufacturing activities and computer graphics. In manufacturing, the 

concept of visibility is used to analyze the necessary condition of physical accessibility, such 

as that of a cutting tool in CNC machining [Chen and Woo 1992, Suh and Kang 1995, 

Balasubramaniam et. al. 2000, Frank et. al. 2006] or a contact probe in CMM measurement 

[Spyridi and Requicha 1990, Lim and Menq 1994, Kweon and Medeiros 1998]. Visibility is 

also applied for assembly fixture calibration [Chen et. al. 2001 and Kong et. al. 2005] and 
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mold parting determination [Chen et. al. 1993, Yin et. al. 2000, Fu et. al. 2002, Elber et. al. 

2004, Khardekar et. al. 2006]. In computer graphics, visibility can be used for surface 

shading, occlusion culling and view-dependent mesh simplification [Stewart 1999].  

2. Related Work 

Given the important role visibility plays in those aforementioned applications, many 

researchers have proposed approaches to computing visibility. Spyridi and Requicha [Spyridi 

and Requicha 1990] studied the probe accessibility of a CMM by abstracting the probe as a 

half line, which is actually equivalent to visibility. Accessibility cones are divided into local 

accessibility cones (LAC) and global accessibility cones (GAC). The LAC of a feature can 

be obtained from the intersection of all half spaces corresponding to the normals of the 

Gaussian image of the feature. The GAC of a feature is found by computing Minkowski 

sums for each point on that feature.  Chen and Woo [Chen and Woo 1992] studied visibility 

on a unit sphere and introduced the idea of a Visibility Map. Similar to a LAC, a visibility 

map is constructed from a Gaussian map, and therefore only provides local visibility, not 

global visibility. Both of these approaches imply the utilization of a “feature” in the analysis. 

However, for a free-form object where no definable features can be recognized, the surface 

visibility will turn out to be the null set.  This (feature-less models) can occur, for example, 

when CAD models are created from reverse engineering methods such as laser scanning or 

from Computer Tomography (CT) or Magnetic Resonance Imaging (MRI).   

In order to compute global visibility for complex objects, Yang et. al. [Yang et. al. 

1999] used the convex hull of surface patches to compute non-visibility. However, a convex 

hull based approach is prone to exaggerate the non-visibility, because a convex hull encloses 

the true surface and the non-visibility of the convex hull may include directions that are 

visible to the true surface. Suh and Kang [Suh and Kang 1995] decomposed a part surface 

into triangular patches and constructed a binary spherical map for visibility. The computed 

visibility is actually the visibility of only the centroid of each triangle patch; therefore it is an 

approximate solution.  Dhaliwal et. al. [Dhaliwal et. al. 2003] also presented an approach of 

computing accurate non-visibility for an object represented by triangular facets. An obstacle 

triangular facet is projected onto the unit sphere centered on the three vertices of the 

triangular facet under study. The non-visibility cone is obtained by finding the spherical 



www.manaraa.com

 

 

 

23

convex hull of these three projected images. This approach has been used for designing 

sacrificial multi-piece molds [Huang et. al. 2003] and permanent multi-piece molds 

[Priyadarshi and Gupta 2004].    Other researchers used graphics techniques to analyze 

visibility used for CMM measurement [Lim and Menq 1994, Spitz et. al. 1999], for CNC 

machining [Balasubramaniam et. al. 2000], and for testing mold parting direction [Khardekar 

et. al. 2006]. Graphics based approaches are limited to a certain resolution inherent to 

computer hardware and provide a sampling of a visibility cone; therefore they cannot offer 

exact solutions. 

The motivation of this paper is to find visibility for polyhedral objects with arbitrary 

convex planar polygon geometry, as most solid objects can be represented by a polyhedron. 

Our goal is to determine the non-visibility of a polygonal facet due to another, and the 

approach is applicable to any polygonal representation, not just triangles as in previous 

research. An approach is presented in this paper to directly compute the boundary of the non-

visibility cone for one polygonal facet due to another.  

 

 

 

 

 

 

 

 

 

 

 

3. Non-Visibility of a Polygonal Facet 

3. 1 Polygonal facet visibility 

Base 

Visible Direction

Side Face 

Side Edge 

(a) Point Visibility                                   (b) Facet Visibility    
 

Fig. 1 Point visibility and facet visibility 
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The visibility considered in this research is based on a planar facet. A planar facet 

here specifically refers to a convex planar polygon. A concave planar polygon would be first 

decomposed into convex polygons. Methods for decomposing concave polygons into convex 

polygons can be found in [O'Rourke 1998]. Similar to the concept of point visibility, 

polygonal facet visibility means the reachability of light rays along a direction towards every 

point comprising the facet with no interference. Geometrically, polygonal facet visibility is 

represented as a 3-D volumetric light beam. The polygonal facet as the base is imagined to be 

fully occupied with light sources with parallel light rays that emit along a direction (Fig. 1). 

Such a direction is said to be a visible direction if no object obstructs the 3-D light beam. In 

this paper we will use base facet to refer to the polygonal facet being analyzed for visibility, 

while all other polygonal facets are called obstacle facets. The maximum visibility of a 

polygonal facet in this paper is limited to a hemisphere, the pole of which is the normal 

vector of the facet (Fig. 2). That says that the visible directions of a facet are restricted to 

those from the external side while directions from the internal side are considered non-

visible.  

 

 

 

 

 

 

3. 2 Tracing the boundary of an obstacle polygonal facet  

The obstacle objects are also represented using convex polygonal facets in this paper. 

Any polygonal facets above the plane where the base facet under study lies are treated as 

potential obstacle facets. An obstacle facet will block part of the visibility of the base facet 

and therefore causes a region of non-visibility on the hemisphere. Such a region of non-

visibility can be obtained by tracing the boundary of the obstacle facet with the 3-D light 

beam emitted from the base facet. The 3-D light beam stays tangent to the boundary of the 

obstacle facet during the tracing process. Since the boundary of the obstacle facet is a closed-

Facet 

Normal Vector

Fig. 2 Maximum visibility of a facet 



www.manaraa.com

 

 

 

25

loop poly-line chain, the light beam will come back to the starting point once it finishes 

tracing the entire boundary of the obstacle facet, thereby tracing a closed region on the unit 

hemisphere. It should be noted that the side edges of the 3-D light beam change orientation 

simultaneously when the orientation of the 3-D light beam varies. Consequently all of these 

edges describe the same traced region on the hemisphere as the light beam traces over the 

boundary of an obstacle facet. Each of these edges can be used to analyze visibility on the 

unit hemisphere at any stage during the tracing process. This simultaneousness makes it 

possible to study visibility using different side edges that belong to the current contact pair of 

geometric elements from both the obstacle facet and 3-D light beam. This will be expanded 

on in Section 3.3 below. Figure 3 illustrates the traced region obtained from tracing the light 

beam along the boundary of an obstacle polygon (Fig.3a-Fig.3h). Figure 3i illustrates the 

traced region on a unit hemisphere.  

3.3 Sliding planes 

The boundary tracing process between the 3-D light beam and an obstacle facet 

actually consists of a set of sliding movements, as can be seen in Fig. 3. Each sliding 

movement occurs between a contact pair, composed of one geometric component from the 

boundary of the obstacle facet and one from the boundary of the 3-D light beam extruded 

from the base facet. These contact pairs can comprise of a side edge of the 3-D light beam 

and an edge of the obstacle facet (Fig. 4a), a side facet of the 3-D light beam and a vertex of 

the obstacle facet (Fig. 4b), or a side facet of the 3-D light beam and an edge of the obstacle   

facet (Fig. 4c). The orientation change of the 3-D light beam over one sliding step between a 

contact pair is illustrated in Fig.4. A hemisphere is constructed on the base   facet with the 

origin to be the vertex point denoted by the symbol “■”in Fig.4. As the 3-D light beam slides 

between the contact pair, a side edge of the light beam, the end point of which is the origin of 

the hemisphere denoted by “■”, is actually moving on a plane called the sliding plane in this 

paper. A sliding plane is an imaginary plane and is defined by the pair of static elements  
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(a) (b) (c) 

(d) (e) (f) 

(g) (h) (i) 

Fig. 3 Illustration of non-visibility by boundary tracing 
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from a contact pair. The pair of static elements of a contact pair includes one component 

from the obstacle facet (an edge or a vertex) and one stationary element of the 3-D light 

beam component (an edge or a vertex of its base   facet). A sliding plane is tangent to both 

the base facet and the obstacle facet on the static elements pair.  In Fig. 4a, the sliding plane 

is defined by the edge in bold of the obstacle facet and the vertex point of the base facet 

denoted by symbol “■”. In Fig. 4b, the sliding plane is determined by the vertex of the 

obstacle facet denoted by symbol “●” and an edge of the base facet in bold. In Fig. 4c, the 

sliding plane is determined by the edge in bold of the obstacle facet and the edge in bold of 

the base facet. It should be noted that the sliding plane described in Fig. 4c only exists when 

the two edges in bold are parallel. It can be seen that all the sliding planes shown in Fig.4 

pass through the origin of the unit hemisphere, and therefore, by the definition of a great arc, 

the orientation change of the 3-D light beam resulting from the sliding movement 

corresponds to a great arc on the unit hemisphere (shown as a bold great arc (Fig. 4a-4c). 

Such sliding planes are also denoted in the example shown in Fig. 3. They are determined by 

the edge in bold and vertex denoted by “●” (Fig. 3a-3h). The traced region in Fig. 3i is 

therefore a spherical polygon, enclosed by a closed chain of spherical great arcs.  

We use Polygon-O to denote the obstacle facet with edges (EOi, i=1…m) and vertices 

(VOi, i=1…m), and Polygon-B to express the base facet with edges (EBi, i=1…n) and vertices 

(VBi, i=1…n). The 3-D light beam constructed from Polygon-B is denoted by Beam-B.   The 

foregoing discussion indicates that each great arc edge of the traced spherical polygon on the 

(a) (b) (c) 

Fig. 4 A sliding step corresponding to a Great Arc 

Side Edge

Great Arc

Edge 

Great Arc 

Vertex

Side Facet Great Arc

Edge 

Side Facet 
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unit hemisphere corresponds to a sliding movement of the 3-D light beam on a sliding plane 

along the boundary of an obstacle facet. All the great arc edges constituting the entire 

boundary of the spherical polygon are obtained when the sliding movements are completed 

on all sliding planes. Therefore the traced region of the Polygon-B due to the obstruction of 

Polygon-O can be computed once all the sliding planes are determined and constructed. To 

determine the sliding planes, it is important to understand the geometric concept and property 

of a sliding plane. A sliding plane is defined by the stationary element (an edge or a vertex of 

the base facet) of the 3-D light beam and part of the boundary of the obstacle facet. The 3-D 

light beam slides along the boundary of an obstacle facet on a sliding plane; however, no 

intersection further than tangency will occur between the 3-D light beam and the obstacle 

facet. A sliding plane can be extended to infinity, bisecting the space into two subspaces. 

Both the obstacle   facet and 3-D light beam extruded from the base facet are tangent to a 

sliding plane and therefore belong to different subspaces. This is summarized below as 

Observation 1 and Properties 1 and 2. 

Observation 1: A sliding plane (SP) is a plane on which the 3-D light beam extruded 

from a base facet slides one step along the boundary of an obstacle facet.  

Property 1: A sliding plane (SP) divides a 3-D space into two half-spaces denoted by 

Space-O and Space-B. Both the base facet and the obstacle facet belong to one subspace 

exclusively, e.g. Polygon-O   Space-O and Polygon-O   Space-B, and Polygon-B   

Space-B and Polygon-B   Space-O. A sliding plane (SP) is tangent to the boundaries of 

both facets, e.g. SP  Polygon-O= EOi or VOi (i=1…m), and SP  Polygon-B= EBi or VBi 

(i=1…n). 

Property 2: A sliding plane (SP) corresponds to a half great circle on a unit 

hemisphere, bisecting the hemisphere into two regions; one containing non-visible directions, 

and the other containing visible directions for the base facet.  

Property 2 of a sliding plane is illustrated by the example in Fig. 5. The sliding plane 

is determined by bold edge AB of the obstacle facet and the vertex denoted by “■” of the 

base facet (Fig. 5a). The 3-D light beam extruded from the base facet can slide in tangency 

to the sliding plane in the subspace containing the base facet at any orientation and will have 

no collision with the obstacle facet.  The range of orientation variation of the 3-D light beam 
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on the sliding plane is described as a half circle on the unit hemisphere (Fig. 5b). This half 

circle bisects the hemisphere into two regions I and II (Fig. 5b).  Region I corresponds to the 

orientation domain where the 3-D light beam is in the subspace containing only the base 

facet and represents the visibility of the base facet.   The 3-D light beam will have no 

intersection with the obstacle facet if the orientation is contained in region I. Region II 

contains the non-visible orientations of the base facet due to the interference from the 

obstacle facet. The 3-D light beam will have intersection with both subspaces containing the 

base facet and the obstacle facet respectively, if the orientation is in region II. Therefore the 

3-D light beam may intersect the obstacle facet.  The great arc AB on the half circle in Fig. 

5b is part of the boundary of the traced spherical region.  

3.4 Non-visibility cone of polygonal facet 

In this section, we will show that the traced region of a 3-D light beam around an 

obstacle facet is the non-visibility cone of the base facet due to the obstacle facet.  

Lemma 1: the spherical polygon obtained from tracing the 3-D light beam around the 

boundary of an obstacle facet is a convex spherical polygon. 

Proof: Refer to Fig.6. Suppose there are m sliding planes for the 3-D light beam to 

trace around the boundary of the obstacle facet, and SP(i) and SP(i+1) are two consecutive 

sliding planes. Corresponding to the two sliding planes are two great circles GC(i) and 

Sliding Plane

  

Side Edge

I

II 

Sliding
Plane

A

B
A

B

(a) (b) 

Fig 5. A sliding plane bisecting unit hemisphere 
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GC(i+1) on the hemisphere. Great circle GC(i) divides the hemisphere (H) into two regions Ii 

and IIi, written as H=Ii+IIi.  Great circle GC(i+1) divides the hemisphere into two regions Ii+1 

and IIi+1.  Great arcs AB and BC are part of the boundary of the traced spherical region on 

great circles GC(i) and GC(i+1) respectively.  Great arcs AB and BC are mapped on to plane 

π through central projection as line segment A'B' and B'C'. Since spherical regions Ii and Ii+1 

both guarantee visibility of the base facet, then the traced spherical region belongs to the 

region shared commonly by regions IIi and IIi+1 on the hemisphere (the region contained by 

half planes ABO and CBO). The angle between half planes ABO and CBO is less than 180o, 

therefore the planar angle A'B'C' projected on plane π through central projection is less than 

180o. Since SP(i) and SP(i+1) are two consecutive sliding planes, the inner angles of the 

planar polygon projected on plane π through central projection are all less than 180o, making 

the polygon convex. By the property of central projection, the corresponding traced spherical 

polygon is convex. ‪ 

 

 

 

 

 

 

 

 

 

 

 

 

Lemma 2: the spherical polygon obtained from tracing the 3-D light beam around the 

boundary of an obstacle facet describes the non-visibility of the base facet due to the 

obstacle facet.   

Proof: each sliding plane corresponds to a great half circle bisecting the hemisphere. 

The traced region is a closed spherical region shared commonly by regions II of all the great 

π
A

B

C

A'

B' 

C' 

Ii

IIi

Great circle GC(i) 

Great circle GC(i+1)

O

Ii+1 IIi+1

Fig. 6 Convexity of the spherical polygon 

On plane π 
On hemisphere 
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half circles, represented by iII , where i=1,2…m and m is the number of sliding planes. 

Since the complete set of orientations is represented as a hemisphere (H), any point P on the 

hemisphere outside of the boundary of the traced region belongs to the complementary set of 

the traced region, i.e. 

                                        P iIIH  = iII  

                                                              = mIIIIII  ...21  

                                                              = mIII  ...21  

That means point P belongs to region I of a sliding plane, i.e. i between 1 and m so that 

iIP . Therefore P represents a visible orientation.   

Lemma 1 states convexity of the traced spherical polygon on the hemisphere and the 

planar polygon mapped on plane π through central projection. For a point Q inside the 

spherical polygon, the image of Q through central projection, Q' on plane π, is inside the 

planar polygon. A line E'F' through Q' on plane π will cross two different edges of the planar 

polygon at E' and F' (Fig. 7). Correspondingly, a great half circle EF through Q will cross the 

two different edges of the spherical polygon on the hemisphere at E and F. Since the two 

edges describe the sliding of the 3-D light beam on two different edges of the boundary of 

the obstacle facet, the 3-D light beam will cross the obstacle facet if moving along EF. The 

sliding of the 3-D light beam along the great circle of EF is a radial sliding process (Fig. 8a), 

by which each edge of the 3-D light beam slides radially on planes corresponding to exactly 

the same great circle EF on the hemisphere. The swept volume is considered to be 

constructed by parallel layers (Fig. 8b), each of which is formed by translating a convex 

polygon identical to the base facet over a linearly changed distance with regard to its height. 

Since each layer is convex, these layers stacked on top of one another build a convex volume. 

Therefore the swept volume of the 3-D light beam along great circle EF is convex. The 

intersection of such a convex swept volume with the convex obstacle facet is also convex. 

The point Q on the hemisphere therefore cannot be a visible direction, which otherwise is 

contradictory to the convexity of the intersection. ‪ 
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So far we have proved that the traced spherical region contains all the non-visible 

orientations of the base facet due to the existence of the obstacle facet.   In the following 

section, we describe how to determine the sliding planes. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4. Determination of Sliding Planes 

A sliding plane is tangent to both the base facet and the obstacle facet; tangent 

elements of both facets with the sliding plane could be a vertex or edge. A pair of tangent 

geometric elements from the base facet and the obstacle facet could be a combination of a 

Fig. 7 An interior point of spherical polygon 
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Fig. 8 Swept volume of a 3-D light beam 
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vertex and a vertex, a vertex and an edge, or an edge and an edge. Such a pair of tangent 

geometric elements is actually a pair of static elements that defines a sliding plane. Although 

a pair composed of a vertex and a vertex is feasible for defining a contact sliding movement, 

the sliding movement is degenerated to be on a single line, and hence, the orientation change 

of the 3-D light beam maps to a point, a form of degeneracy of a great arc, on a unit 

hemisphere. Such a pair of elements for tangency is neglected in our analysis because it does 

not contribute to the construction of the spherical polygon that represents non-visibility. 

Other combinations, like a vertex and an edge, and an edge and an edge, contribute to the 

construction of a spherical polygon by mapping onto the unit hemisphere as great arcs (Fig. 

4).   

Since the 3-D light beam traces the boundary of an obstacle facet by sliding 

movements on a set of sliding planes, the non-visibility due to that obstacle facet can be 

determined as long as all these sliding planes are found. The set of sliding planes we are 

investigating are restricted to those determined by tangent pairs that include a vertex from 

one facet and an edge from the other facet (Figs. 4a, b). The vertex and vertex pair is 

neglected because the geometric degeneration, and the edge and edge pair (Fig. 4c) can be 

treated as a special case that is a combination of the two cases described in Fig. 4a and Fig. 

4b. The construction of sliding planes depends on the tangent pairs between two convex 

polygons, regardless of base facet or obstacle facet; hence, we have property 3.  

Property 3: Two convex polygonal facets share the same set of sliding planes.  

Given property 3, lemma 3 is provided below. 

Lemma 3: given two convex polygonal facets, the non-visibility of each facet due to 

the other facet is symmetric about the origin of a unit sphere, if each facet is above the other 

facet along its normal.  

Proof: Fig. 9. illustrates a sliding plane determined by the edge (in bold) of facet B 

and the vertex of facet A, denoted by “●”. Fig. 9a shows the sliding of the 3-D light beam 

extruded from facet A along facet B on the sliding plane; the orientation change is 

represented as angle α. Correspondingly, a 3-D light beam extruded from facet B slides along 

facet A on the sliding plane; the orientation change is angle β (Fig. 9b). The two edges of 

angle α are parallel to those of angle β. They are expressed spherically as great arcs on a unit 
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(a) 

β
O

α 

β

A

α

A

B B

(b) (c) 

Fig. 9 Reflectivity of non-visibility of two convex polygonal facets 

sphere and are symmetric about the origin of the unit sphere (Fig. 9c). Fig.9 shows a tangent 

pair that includes a vertex from facet A and an edge from facet B, the case previously shown 

in Fig. 4a. The same conclusion can be made for the tangent pair that includes an edge from 

facet A and a vertex from facet B, the case previously shown in Fig. 4b and the tangent pair 

that includes an edge from both facet A and B, the case previously shown in Fig. 4c. Since 

the two corresponding great arcs on one sliding plane are symmetric about the origin of the 

unit sphere, the non-visibility cones traced on all sliding planes are symmetric as well. ‪ 

 

 

 

 

 

 

 

 

 

4.1 Determining sliding planes from polygon edges 

To study the construction of sliding planes between two convex polygonal facets, we 

denote them simply by polygon-1 (m edges) and polygon-2 (n edges), instead of 

distinguishing them as a base facet or an obstacle facet. Consider an edge E1i of polygon-1.  

E1i or its extension can intersect with the plane (π) on which polygon-2 resides. The 

intersection point can be either inside polygon-2 (Fig. 10a) or outside polygon-2 (Fig. 10c) 

(note: polygon-1 is not shown in Fig.10). E1i or its extension can even have no intersection 

with and is parallel to plane π (Fig. 10b).  These three cases are discussed separately below.  

1).  E1i or its extension intersects outside Polygon-2  

If E1i or its extension intersects outside Polygon-2 at point C (Fig. 10a), then any 

plane containing E1i must have point C on its intersection line with plane π. All planes that 

contain E1i are like a plane cluster pivoting on E1i. To find those that are tangent to Polygon-

2, a set of polar lines can be constructed from point C by connecting point C to the vertices of  
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Polygon-2. The polar angles are compared, and the vertex of polygon-2 with maximum polar 

angle (Tmax) and the vertex with minimum polar angle (Tmin) are located. Polar lines l1 and l2 

containing Tmax and Tmin, respectively, can establish two planes, P1 and P2, with E1i. These 

two planes are potentially feasible sliding planes, because they both contain E1i and at the 

same time are tangent to polygon-2. Planes P1 and P2 divide the 3-D space into four sub-

spaces, I, II, III, and IV. In the situation where Polygon-1 falls within sub-spaces I or II, then 

there is one sliding plane. In Fig. 10a, if Polygon-1 is in sub-space I, then P1 is the sliding 

plane to which Polygon-1 and Polygon-2 are tangent on different sides, however P2 is an 

invalid sliding plane to which Polygon-1 and Polygon-2 are tangent on the same side. 

Likewise, Polygon-1 in sub-space II makes P2 a sliding plane while P1 is an invalid sliding 

Fig. 10 Determination of sliding planes 
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plane, to which Polygon-1 and Polygon-2 are tangent on the same side. If Polygon-1 is in 

sub-space III, then both planes P1 and P2 are valid sliding planes, because they are both 

tangent to Polygon-1 and Polygon-2, and Polygon-1 and Polygon-2 are on different sides. 

Therefore, there are two great arcs that are mapped on to the unit hemisphere by sliding the 

3-D light beam along E1i. However, when Polygon-1 is contained in sub-space IV, there is no 

valid sliding plane, because both Polygon-1 and Polygon-2 are tangent to P1 and P2 on the 

same side.  

2). E1i parallel to Polygon-2 

This is a case slightly different from the first case where E1i or its extension intersects 

outside Polygon-2 at a point C. When E1i is parallel to Polygon-2 (Fig. 10b), the intersection 

point could be considered to be at infinity. Two lines l1 and l2 parallel to E1i can be 

constructed to be bounding Polygon-2 on plane π where Polygon-2 lies. Two tangent planes 

P1 and P2 are created as potential sliding planes from l1 and E1i, and l2 and E1i, respectively. 

As in the first case, four sub-spaces, I, II, III, and IV, are generated by planes P1 and P2. The 

same conclusions as to valid sliding planes can be drawn with respect to each of the sub-

spaces I, II, III, and IV.  

3). E1i intersects inside Polygon-2 

If E1i or its extension intersects inside Polygon-2 at a point C (Fig. 10c), then any 

plane containing E1i will also intersect with plane π inside Polygon-2. No plane tangent to 

Polygon-2 can be made through E1i.  Therefore no sliding plane exists.  

The above discussion can be summarized into Observation 2 and 3.  

Observation 2: Given two convex polygons, Polygon-1 and Polygon-2. If an edge of 

Polygon-1, E1i or its extension, has no intersection point with Polygon-2, then two tangent 

planes through E1i, P1 and P2, can be found to be tangent to Polygon-2. P1 and P2 divide the 

space into four sub-spaces I, II, III, and IV (Fig. 10a and Fig. 10b). If Polygon-1 belongs to 

either sub-space I or II, then there is one sliding plane with E1i. If Polygon-1 belongs to sub-

space III, then there are two sliding planes with E1i. If Polygon-1 belongs to sub-space IV, 

then there is no sliding plane with E1i. 
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Observation 3: Given two convex polygons, Polygon-1 and Polygon-2. If an edge of 

Polygon-1, E1i or its extension, has an intersection point within Polygon-2, then there is no 

sliding plane with E1i.  

Once edges of Polygon-1 are all processed with vertices of Polygon-2 for sliding 

planes, edges of Polygon-2 will go through the same procedures with vertices of Polygon-1 

to determine feasible sliding planes. All sliding planes can be found by doing so.  

4.2 Edge number of a non-visibility cone 

Based on Observation 2 and 3, the following lemmas are proposed and proved.  

Lemma 4: Given two convex polygons, Polygon-M (with m edges, EMi, i=1…m) on Plane-M 

and Polygon-N (with n edges, ENi, i=1…n) on Plane-N. If the intersection line of Plane-M 

and Plane-N does not intersect Polygon-M and Polygon-N, then the spherical polygon 

mapped on the unit hemisphere has (m+n) edges.        

Proof: Since the intersection of Plane-M and Plane-N does not intersect Polygon-M 

or Polygon-N, the intersection of Plane-M and Plane-N, line lM-N in Fig. 11a is outside of 

both Polygon-M and Polygon-N. For an edge EMi of Polygon-M, its extension intersects line 

lM-N at point C. Two tangent planes are constructed using the process described in section 4.1. 

It is shown in Fig. 11a that Polygon-M belongs to sub-space I. Actually Polygon-M can only 

lie in sub-space I or II. Suppose Polygon-M is in sub-space III or IV, Plane-M will have 

intersection with Polygon-N; that is, line lM-N will cross through Polygon-N. However this is 

contradictory to the fact that lM-N is outside of both Polygon-M and Polygon-N. Thus 

Polygon-M can only belong to sub-space I or II. From Observation 2, we know that once an 

edge is in either sub-space I or II, there is one valid sliding plane associated with that edge 

that corresponds to a great arc on the unit hemisphere. So for Polygon-M with m edges, there 

are m spherical edges mapped on the unit hemisphere. The same proof can be performed on 

Polygon-N. Therefore there are altogether m+n edges for the spherical polygon.  

Figure 11b shows that Plane-M is parallel to Plane-N. In this case, line lM-N is 

infinitely away.  Similarly Polygon-M can only belong to sub-space I or II. Therefore there 

are also m+n edges for the spherical polygon on the unit hemisphere. ‪ 
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Lemma 5: Given two convex polygons, Polygon-M (with m edges, EMi, i=1…m) on 

Plane-M and Polygon-N (with n edges, ENi, i=1…n) on Plane-N. If the intersection line of 

Plane-M and Plane-N does not intersect Polygon-M, but intersect Polygon-N, then the 

spherical polygon mapped on the unit hemisphere has ((m-m0)*2+n) edges. m0 is the number 

of a subset of Polygon-M edges,{EMi: EMi makes Polygon-M in sub-space IV, or, EMi or its 

extension intersects the inside of Polygon-N}.  

Proof: Given that the intersection line of Plane-M and Plane-N does not intersect 

Polygon-M, but intersects Polygon-N, then Polygon-M is either in sub-space III or sub-space 

IV if we are analyzing one edge of Polygon-M and neither that edge, EMi, nor its extension 

intersects the inside of Polygon-N. Referring to Fig. 12a and Fig. 12b and based on 

Observation 2, if Polygon-M falls within sub-space III, two sliding planes can be obtained 

through EMi; if within sub-space IV, then no sliding plane exists. Also, if the edge EMi or its 

extension instersects the inside of Polygon-N, there is no sliding plane associated with EMi 

from Observation 3. Therefore there are (m-m0)*2 sliding planes that can be constructed 

through the edges of Polygon-M.   

Since the intersection line of Plane-M and Plane-N does not intersect Polygon-M, 

every edge of Polygon-N, ENi, or its extension intersects outside of Polygon-M (Fig. 12c). 
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Similar to the proof of Lemma 4, for each edge ENi, Polygon-N always exists in sub-space I 

or II. Therefore, there are n sliding planes that can be constructed.  

Altogether there are ((m-m0)*2+n) sliding planes, and hence, ((m-m0)*2+n) edges for 

the corresponding spherical polygon on a unit hemisphere. ‪ 

5. Implementation  

In this section, two examples are given to show the effectiveness of the proposed 

method in computing the non-visibility of convex polygons.  Example 1 demonstrates the 

case of non-visibility of two convex polygons described in Lemma 4. Figure 13 shows two 

triangles, T1 and T2. Triangle T1 has vertices V11, V12, and V13, and edges e11, e12 and e13.  

Triangle T2 has vertices V21, V22 and V23, and edges e21, e22 and e23. The vertex coordinates as 

well as normal vectors are listed in Table 1. The intersection line of the two planes 

containing triangles T1 and T2 crosses neither of these two triangles. Therefore Lemma 3 

holds for example 1. Six sliding planes are found and their corresponding defining elements 

are shown in Table 2. Figure 14 shows non-visibility cones IV1/2 (the non-visibility of T1 due 

to the obstacle T2) and IV2/1 (the non-visibility of T2 due to the obstacle T1) on a unit sphere. 

The symbol “*” represents vertices of non-visibility cones in Fig. 14.   Both IV1/2 and IV2/1 

are closed spherical polygons and have six vertices and edges, the summation of the number 

of edges in T1 and the number of edges in T2. The vertices of non-visibility cones IV1/2 and 

IV2/1 are listed in Table 3. It can be seen that non-visibility cones IV1/2 and IV2/1 are 

symmetrical with respect to the origin of the unit sphere.  

 

Table 1 Coordinates and normal vectors of two triangles (unit: cm) 

 

 

 

Polygon Normal Vector Vertex 1 (V11/V21) Vertex 2 (V12/V22) Vertex 3 (V13/V23)

Triangle 1(T1) (0, 0, 1) (0.85, 0.92, 0) (5.73, 1.97, 0) (2.51, 4.36, 0)

Triangle 2(T2) (-0.46, -0.56, -0.69) (-1.88, 3.95, 4.97) (3.33, 2.06, 3.06) (1.40, 5.25, 1.77)
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Table 2 Sliding planes of example 1 

 

           

 

 

 

Table 3 Vertices of spherical non-visibility cones IV1/2 and IV2/1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Example 2 illustrates the case as described in Lemma 5. Two convex polygons, one with 5 

edges (a 5-gon, denoted as P5) and the other with 6 edges (a 6-gon denoted as P6), are 

displayed in Fig. 15. Polygon P5 has vertices V51, V52, ... V55, and edges e51, e52, …e55.  

Polygon P6 has vertices V61, V62, ... V66, and edges e61, e62, …e66. The vertex coordinates as 

well as normal vectors are listed in Table 4. The intersection line of the two planes 

containing polygon P5 and P6 crosses polygon P5, but not P6 (Fig. 15). In addition, extensions 

Vertex 1 Vertex2 Vertex 3 Vertex 4 Vertex 5 Vertex 6

(VIV 11/VIV 21) (VIV 12/VIV 22) (VIV 13/VIV 23) (VIV 14/VIV 24) (VIV 15/VIV 25) (VIV 16/VIV 26)

IV1/2 (0.12, 0.92, 0.38) (-0.76, 0.57, 0.31) (-0.82, 0.21, 0.53) (-0.66, -0.06, 0.75) (0.60, 0.28, 0.75) (0.21, -0.59, 0.78)

IV2/1 (-0.12, -0.92, -0.38) (0.76, -0.57, -0.31) (0.82, -0.21, -0.53) (0.66, 0.06, -0.75) (-0.60, -0.28, -0.75) (-0.21, 0.59, -0.78)

Non-visibility 
cones

Fig.14 Mutual non-visibility cones on unit sphere 

IV2/1 

IV1/2 

Fig. 13 Two triangles 

T1 

T2 

V11 

V12 

V13

V21 

V22 
V23

e11 

e12 

e13 

e21 

e22 

e23 

Sliding Plane 
Number

Defining Elements Sliding Plane 
Number

Defining Elements

1 e11 and V23 4 e21 and V13

2 e12 and V21 5 e22 and V11

3 e13 and V22 6 e23 and V12
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of edges e62 and e66 intersect inside of P5, as is represented by the dash lines in Fig.15. 

Therefore example 2 does not belong to the situation described in Lemma 4. According to 

Lemma 5, m0 is the number of a subset of the edges of a polygon such that those edges make 

the polygon in sub-space IV, or, those edges or their extension intersects the inside of the 

other Polygon. For example 2, the subset includes e63, e64 and e65 (because they make 

polygon P6 in sub-space IV) and e62 and e66 (because their extension intersects the interior of 

polygon P5). Therefore m0 for example 2 is 5, and m and n are the numbers of edges of 

polygons P6 and P5, respectively. Consequently the number of sliding planes is obtained as 

(m-m0)*2+n=(6-5)*2+5=7. The defining elements of sliding planes of example 2 are listed in 

Table 5. The corresponding non-visibility cone of Polygon P5 due to the interference of 

polygon P6 is shown in Fig. 16.  The vertices of the non-visibility cone IV5/6 are listed in 

Table 6.  

However, if Polygon P6 is translated along the X-axis by the amount of 3.5(cm) to P'6, 

then the intersection line of the two planes containing polygon P5 and P'6 will have 

intersection with neither of them (Fig. 17). Under this circumstance, both Lemma 3 and 

Lemma 4 hold for polygon P5 and P'6. Hence the non-visibility of P5 due to P'6 (IV5/6’) and 

the non-visibility of P'6 due to P5 (IV6’/5) are symmetrical about the origin of the unit sphere 

and both have 11(5+6) edges (Fig. 18).  

Table 4 Coordinates and normal vectors of a 5-gon and a 6-gon (unit: cm) 

 

 
 
 
 
 
 

Vertex 4 Vertex 5 Vertex 6

 (V54/V64)  (V55/V65)  (-/V66)

Polygon P5 (0, 0, 1) (-2.10,  -2.25, 0) (2.54, -1.89, 0) (3.91, 0.72, 0) (1.45, 3.55, 0) (-1.76, 2.81, 0) —

Polygon P6 (-0.61, -0.61, -0.51) (0.88, -1.97, 4.31) (-1.77, 0.68, 4.31) (-5.19, 1.22, 7.75) (-4.65, -1.03, 9.81) (-2.12, -3.96, 10.30) (1.49, -5.13, 7.37)

Vertex 3 
(V53/V63)

Polygon Normal Vector
Vertex 1 
(V51/V61)

Vertex 2 
(V52/V62)
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Table 5 Sliding planes of example 2 

 

 

 

 

 

Table 6 Vertices of spherical non-visibility cones IV5/6 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Sliding Plane 
Number

Defining Elements
Sliding Plane 

Number
Defining Elements

1 e51 and V62 5 e55 and V61

2 e52 and V62 6 e61 and V51

3 e53 and V62 7 e61 and V54

4 e54 and V61

Vertex number Coordinates Vertex number Coordinates

1 (0.06, 0.56, 0.83) 5 (-0.08, -0.79, 0.61)

2 (-0.65, 0.39, 0.65) 6 (0.38, 0.69, 0.62)

3 (-0.80, -0.01, 0.60) 7 (0.57, 0.05, 0.82)

4 (-0.53, -0.47, 0.71)

P5 

P6 

V5

V5
V5

V5

V5

V6

V6

V6
V6

V6

V6

e5

e5

e5

e5

e5

e6

e6

e6

e6

e6

e6

Fig. 15 A 5-gon and a 6-gon Fig. 16 Non-visibility of 5-gon due to 6-gon 

IV5/6 
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6. Computational Results 

This section provides the examples of applying our proposed approach in computing 

visibility of 3-D objects.  Computational time is given for the examples. We used STL files 

that are available from commercial software to demonstrate the computational results. The 

approach is implemented in the C programming language on a Pentium (R) D CPU 3.00Ghz 

PC running Windows XP. Table 7 shows the computational time of three part models as well 

as the number of tessellated facets on their surfaces. The second part in Table 7 (a block with 

a cylinder through hole) was tested with different facet numbers by changing surface 

tolerance, and the result is shown in Table 8 and Fig 19.  

To obtain the visibility of a facet, its non-visibility cones with all other facets should 

be computed. Therefore for a polyhedral CAD model with n facets, the computational 

complexity of computing its visibility is O(n2). Currently in our program, only those facets 

that are either partially or completely above the plane where the facet under study resides are 

used to compute non-visibility cones. The non-visibility cones with those facets that are 

below the plane are assigned as null, because the potential visibility of a facet is limited to a 

hemisphere with the pole pointing to its normal vector. Since the visibility of a concave facet 

is only blocked by the facets in the same concave region [Chen et. al. 1993], the 

computational performance of the approach can be improved through identifying concave  

P5 

P P’

Fig. 17 Translated polygon P’6 

IV5/6’ 

IV6’/5 

Fig. 18 Non-visibility cones IV5/6’ and IV6’/5 
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Table 7 Computational results of  three CAD models 

Table 8 Computational time of  Part No. 2 with different facet number 
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regions. The concave facets should also be grouped into their corresponding concave regions. 

It is expected that this is where our future improvement lies.  

7. Conclusion 

This paper presented a method of computing non-visibility, the exact complementary 

set of visibility, for polygonal facets on a polyhedral CAD model. The boundaries of a non-

visibility cone are computed directly by determining sliding planes. The input can be 

arbitrary convex planar polygonal facets; hence the approach can be used for any polygonal 

model with planar facets. The visibility considered in this paper is complete visibility, 

requiring each point on a facet to be visible. Therefore a partial visible facet will be rated as 

completely non-visible. In our future work, partial visibility will be taken into account, and 

will be used as a guide to further subdivide a partially visible facet so that the facet may be 

visible from the combination of a set of directions. This can help determine workpiece set up 

orientations in feature-less machining methods, which we have previously developed in other 

research. Another interest of our future work is to construct an analytical model of the sliding 

planes between two facets. Since sliding planes determine the boundaries of a non-visibility 

cone, an analytical model of the sliding planes can be used to help adjust the location and 

geometry of an obstacle facet, leading to a new method of re-designing polyhedral models 

for increased visibility.  

In conclusion, the method of computing non-visibility presented in this paper can 

have useful applications for manufacturing analysis, such as determination of setup 

orientations and axes of rotation for multi-axis machining.  In addition, it can be used as an 

accurate analysis of the manufacturability of a design.  These topics will be the focus of 

future research and publications. 
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CHAPTER 4.  COMPUTING AXES OF ROTATION FOR SETUP 

PLANNING USING VISIBILITY OF POLYHEDRAL CAD MODELS 
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Abstract 

This paper presents a method for determining feasible axes of rotation for setup 

planning, based on the visibility of a polyhedral model.  The intent of this work was to 

develop a feature-free approach to setup planning, with the specific focus on multi-axis 

machine setups.  Visibility mapping can provide a quantitative evaluation of a surface, a 

feature or an entire part model; however, the next step is to use this information for process 

planning.  In this paper, we present an approach of using a visibility map to evaluate axes of 

rotation that could be used in an indexer-type setup on a machine tool.  Instead of using 

expensive and complicated multi-axis machining, it may be feasible to machine using 

multiple 3-axis toolpaths if a single axis of rotation can be used to rotate the part through the 

minimum set of orientations.  An algorithm is presented that is capable of processing 

visibility information from a polyhedral model; hence the method is generic and does not 

require feature detection.  As such, the work is applicable to a variety of applications; in 

particular for subtractive rapid prototyping where complex geometry may not contain 

recognizable features. 

1. Introduction 

CNC machining is widely used in the creation of complex shapes for aerospace, 

automobile and biomedical industries and lately for use in subtractive rapid prototyping. As a 
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material removal process controlled by programs, CNC machining has demonstrated its 

capabilities in accuracy, efficiency and repeatability.  It is particularly flexible in that it can 

use a wide range of materials unlike almost any other manufacturing or rapid prototyping 

processes. However, CNC machining is still limited by the complexity in process planning 

required to create the NC code.  In particular tool accessibility, which is required by a 

material removal process, is a significant challenge in the implementation of CNC machining, 

especially for rapid prototyping. An accessibility analysis is required before a machining 

operation can be processed. The more accessibility a machining setup provides, the more 

complex shapes it is able to machine; therefore, accessibility is an indicator to describe the 

flexibility and versatility of a machine, or of a particular machine setup. Modern multi-axis 

CNC machines rely heavily on the simultaneous motions of several axes in order to access 

the cutting surfaces of the part. The complexity and cost involved in process planning and 

programming to generate the toolpaths increases as the number of controlled axes increases 

(typically 2 to 5). Similarly, the cost of a CNC machine increases significantly with the 

number of controllable axes. With this in mind, an economical method for machining 

complex geometries is sought, with the purpose of reducing the cost and difficulty related to 

process planning.  This may be possible if a set of setup orientations about a rotary indexer 

can machine the part completely, and only require simpler 3-axis programming.           

Accessibility of milling machines is often geometrically approximated by the concept 

of visibility, in the form of line-of-sight accessibility. Hence, the accessibility of a 3-axis 

milling machines is a single point on a unit sphere whereas the accessibility  of 4- and 5- 

axis machines expand to a great arc and a cone on a unit sphere, respectively. Since a 

geometric point is the constitutive element comprising a one-dimensional arc and a 

two-dimensional cone, the capability of a 3-axis machine is therefore a subset of that of a 

4-axis machine, and hence a subset of a 5-axis machine. In addition to regular 3-5 axis 

machines, 3-axis machines with a 4th axis indexer provide inclined end milling capabilities 

on 3-axis machines in order to create curved surfaces [Ip and Loftus 1993] and generally 
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increased accessibility. A 4-axis indexed machine is constructed from a 3-axis machine with 

at least one, but sometimes two opposing chucks mounted on the work table. A 4-axis 

indexed machine rotates the workpiece about the axis of rotation between operations; thus its 

accessibility is a great circle, instead of a great arc, allowing access to the workpiece from all 

radial directions about the axis of rotation. This capability avoids numerous 

re-fixturing/re-clamping operations and can allow access to some undercut features. Recently, 

this method of 4-axis indexed machining has been implemented as a Rapid Prototyping 

strategy called CNC-RP and has demonstrated capability in creating complex geometries 

without the use of complex 4- and 5-axis NC programming [Frank et al, 2004].  This paper 

is motivated in part by unsolved 

problems in the complete 

implementation of the CNC-RP 

method in software.  This work 

can avoid one manual operation 

that the user currently performs, a 

detrimental characteristic with 

regard to the expectations of 

process planning for an RP 

process.  This step is the initial 

selection of an axis of rotation for 

a particular part geometry. 

The selection of an axis of 

rotation is a critical step in the 

implementation of a 4-axis 

indexed machining strategy. A 

proper axis of rotation provides 

Fig.1 Axis of rotation and accessibility to a simple feature on a

cube; (a) poorly chosen axis with no accessibility to hemispherical

pocket and (b) proper choice with pocket accessible 

Axis of rotation 

Cutting tool

(a)

Axis of rotation 

Accessible

*section view 

(b)

*section view 

Inaccessible 

Cutting tool 
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better accessibility, reducing the number of setups and the need for re-fixturing. Figure 1 

shows a simple cubic part with a hemisphere pocket on one side to illustrate axes selection. A 

poorly chosen axis of rotation produces an inaccessible surface that requires a second setup, 

while a better axis can obviously make the part machinable in one setup. Granted, a proper 

axis for this part may seem intuitive; however, for a part with complex freeform surfaces, an 

analytical method for searching feasible axes of rotation is necessary. 

2. Literature Review 

Workpiece setup in CNC machining is directly related to a part’s manufacturability 

and the resulting quality of the machined surfaces; therefore, research on this issue has 

received extensive attention. Much of the literature employs the concept of features and 

related feature recognition methods, which can facilitate process planning by linking 

geometric part information to manufacturing processes. A feature is an aggregate of 

geometric entities that together convey important information to the downstream 

manufacturing activities. Feature recognition is the first step in performing feature-based 

analysis. A number of reviews on feature recognition can be found in [Allada and Anand 

1995, 1996; Miao et al, 2002; Salomons et al, 1993; Zulkifli and Meeran 1999]. Assuming 

features can be recognized, design information becomes interpretable in the manufacturing 

stage, which facilitates concurrent engineering and thus speeds up the product development 

cycle.     

The recognized features on a design model and their interrelation make the design 

description ready for machining setup planning. Ferreira and Liu developed a rule-based 

system to generate setup orientations for workpieces described with features [Ferreira and 

Liu 1988]. Demey et al, determined the minimal number of setups, considering both the 

physical conditions and the economical and quality issues [Demey et al, 1996]. Chu and 

Gadh classified features into single approach direction features and multi approach direction 

features, and then determined the minimized number of setups along with knowledge-based 
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rules [Chu and Gadh 1996]. The rule-based approaches allow setups generated with 

user-intended objectives, therefore provide the integration of human knowledge into 

manufacturing process planning. In determining setup orientations, feature-based workpieces 

are also receiving other physical constraints from machine configurations and fixturing 

devices [Cevdet 2004]. Wu and Chang developed an automated setup selection method based 

on tolerance analysis [Wu and Chang 1998]. The setups are ranked and then released for 

fixture selection.  Yen et al, integrated setup planning with geometric positioning and 

tolerancing for fixture planning [Yen et al, 2001]. To meet the constraints imposed on setup 

planning from machine capabilities and design information, a number of techniques such as 

fuzzy-set [Ong and Nee 1996] and GA and SA [Ong et al, 2002] have been used for 

searching for optimal solutions.  

The reason for using feature-based approaches owes somewhat to the fact that most 

designs, particularly those for mechanical parts, are geometrically composed of features. 

However the increasing need to handle freeform shapes such as those reconstructed from 

reverse engineering techniques (e.g. laser scanning, CT and MRI scanning) pose new 

challenges to manufacturing process planning. On those freeform shapes, there may be no 

definable “features”, which lends feature-based approaches incapable. Since the primary 

concern of setup planning for material removal processes is to provide accessibility for the 

cutting tool, researchers identified visibility as the necessary condition of providing 

accessibility and have used it to extract setup planning through geometric operations. Suh 

and Kang used a discretized model to construct global visibility and a similar method to find 

a feasible setup orientation for 4-axis milling [Suh and Kang 1995]. Gan et al, constructed a 

visibility map from a Gaussian map [Gan et al, 1994]. Other researchers used the visibility 

map constructed from a Gaussian map to compute setup orientations for 4- and 5- axis 

machining [Tang et al, 1992; Chen et al, 1993; Haghpassand and Oliver 1995]. For 4-axis 

milling, a feasible setup orientation should be one that allows a great circle orthogonal to it to 

intersect all spherical visibility polygons. However the visibility constructed from Gaussian 
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maps is local visibility that cannot guarantee global accessibility.  

3. Visibility 

Visibility describes the accessibility of a line of sight. A line connecting a point A on 

a surface with a viewing point not obstructed by any other surfaces or objects, is said to 

denote a visible direction of point A. Depending on the location of the viewing point relative 

to point A, visibility is classified as one of two categories: local visibility and global visibility. 

The viewing point of local visibility is relatively close to the point and does not consider all 

surrounding surfaces/objects as obstacles to visibility. Local visibility of a point is 

determined only by its normal vector. However, global visibility must consider all 

surrounding surfaces and objects, which could be potential obstacles blocking visibility. 

Therefore global visibility provides a more accurate description of accessibility. It can be said 

that for manufacturing process planning, global visibility gains greater importance as the 

complexity of geometry of the part surfaces increases.     

As a material removal process, CNC machining requires accessibility by the cutting 

tools, which makes the determination of global visibility a critical step in process planning. 

Suh and Kang constructed a binary spherical map to compute global visibility [Suh and Kang 

1995]. However it cannot obtain the exact global visibility, because the computed visibility 

actually represents the visibility of the centroid of each triangular patch on the surface model. 

Dhaliwal et al, computed accurate non-visibility for an object represented by triangular facets 

by projection and convex hull operations [Dhaliwal et al, 2003]. Balasubramaniam et al, used 

graphic techniques to obtain visibility information [Balasubramaniam et al, 2000]. However, 

graphic based approaches may not render exact visibility due to the resolution of the 

hardware.  

In this paper, an approach developed by the authors to compute exact visibility is used 

to generate feasible axes of rotation for 4-axis indexed milling operations. The previous work 

on visibility is based on determining its complementary set, non-visibility. A non-Visibility 
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Cone due to one obstacle facet is obtained by tracing a 3-D light beam extruded from the 

facet under analysis along the boundary of the obstacle facet (Figure 2). This approach is able 

to compute visibility for convex polygons with any number of sides, not limited to triangular 

facetted models; therefore it has flexibility for various input models [Li and Frank 2007]. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

4. From Visibility to Axis of Rotation  

Though visibility is generally represented as a cone on a unit sphere, this section will 

begin with analysis of the simplest form of visibility- Point Visibility, and then extend to two 

more complex forms of visibility- Arc Visibility and Cone Visibility. Point Visibility, as the 

basic element, constitutes Arc Visibility and Cone Visibility. In this section, the relations 

(a) (b) (c) 

(d) (e) (f) 

Fig. 2 Illustration of Non-visibility by Boundary Tracing [Li and Frank 2007];

(a-e), tracing the boundary of an obstacle polygon with respect to another

polygon, and (f) coinciding swept arcs of the non-visibility map on a unit sphere 
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between these three forms of visibility and axes of rotation are identified, which will 

facilitate the search for axes of rotation. 

4.1 Point visibility 

Point visibility is the simplest form of visibility and its relation with axes of rotation 

will be used to determine further relations of Arc and Cone Visibility to axes of rotation. In a 

milling machine setup, a feasible cutting direction to a surface patch can be geometrically 

interpreted as a Point Visibility to that surface patch and is denoted as a point on a unit sphere.  

Given this cutting direction, the X axis of the machine, which aligns with the axis of rotation 

in a typical 4-axis indexed setup, can be oriented (in the x-y plane) anywhere as a feasible 

orientation as long as it is perpendicular to the cutting direction (Fig. 3a). Collectively, all 

feasible axes of rotation perpendicular to the cutting direction form a great circle on the unit 

sphere (Fig. 3b).  Therefore the first relation can be stated as: Each Point Visibility 

corresponds to one great circle of axes of rotation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.2 Arc visibility 

The Arc Visibility considered in this paper is limited to great arcs on a unit sphere. 

Since an arc of visibility is a collection of Point Visibility, the axes of rotation of the arc are 

the collection of all axes of rotation corresponding to each visibility point constituting that 

Axis of rotation 
x y 

z 

Fig. 3 Point Visibility and axes of rotation; (a) Point Visibility for one tool position 

and orientation on a 4th axis setup and (b) corresponding great circle  

(a) (b)
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great arc. A great arc on a unit sphere can be perceived as the trajectory of a visibility point 

moving from one end of the arc to the other. The great circle, representing feasible axes of 

rotation for each point on the arc, maintains a perpendicular relation with the Point Visibility 

on the unit sphere. As a visibility point moves on a great arc on the unit sphere, the great 

circle perpendicular to it will rotate as 

well.  The set of all feasible axes of 

rotation corresponding to an Arc of 

Visibility is the spherical area that the 

great circle sweeps on the unit sphere, 

which is the area between two great 

circles corresponding to the two end 

points of the great arc (shaded area in 

Fig. 4). Therefore the second relation 

can be stated as: Each great arc of visibility generates an area between two great circles, 

corresponding to the end points of the great arc for feasible axes of rotation. 

 
4.3 Cone visibility 

In most cases, visibility is given as a Visibility Cone, which maps onto the unit sphere 

as a region or a number of separate regions. Unlike an Arc of Visibility that can be 

represented by a trajectory of Point Visibility, a Visibility Cone usually cannot be 

represented into a set of equal-length great arcs. Instead, a Visibility Cone can be discretized 

into a series of great arcs truncated from great circles by the Visibility Cone boundary (Fig. 

5). If axes of rotation for each of these great arcs are obtained, then their union gives the 

feasible axes of rotation for the Visibility Cone. Therefore the third relation can be stated 

as: A Visibility Cone corresponds to the union of axes of rotation of the great circles used to 

approximate the Visibility Cone. 

Fig.4 Arc of Visibility and shaded region between two 

great circles representing feasible axes of rotation  

Arc of Visibility 
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The three relations stated above are used to map visibility information to axes of 

rotation on a unit sphere. However the visibility calculation is only neccessary for facets 

located on concave regions, since a facet on a convex region has visibility up to a 

hemisphere; which includes an infinite number of half great circles. From the second relation 

in 4.2, a half great circle of visibility corresponds to the area between the two great circles 

corresponding to the two end points of the half circle, which is actually a complete unit 

sphere surface (Fig. 6). Therefore any axis can serve as a feasible axis of rotation for convex 

facets. 

 

 
 
 
 
 
 

5. Computing Axes of Rotation 

      Practically, the visibility of a polygonal facet is given as a 3-D Visibility Cone, which 

maps on the unit sphere as a region or a number of separate regions. In this research the 3-D 

visibility regions for each facet i (i=1…m) on the unit sphere are not exact, but are 

approximated by 2-D great arcs (Fig. 5). This approximation is termed a rasterization, by 

Fig. 6 Half great circle corresponds to a unit sphere for axes of rotation 

Fig.5 Visibility Cone discretized to visibility arcs; (a) Visibility Cone (b) 

corresponding visibility arcs used to approximate surface on the unit sphere 

Great Arcs i=1…n 

(a) (b) 

Visibility Cone 
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which 3-D Visibility Cones for each facet Fi (i=1…m) are approximated by a raster of great 

arcs (Great Arc GAij, j=1…. n). Axes of rotation can then be obtained from these rasterized 

great arcs using the relation stated in section 4.2.    

5.1 Rasterization of the Visibility Cone 

From section 4.3, a Visibility Cone can be approximated by a set of great arcs 

contained within the boundary of the Visibility Cone. The rasterization for a Visibility Cone 

can be executed in an infinite number of ways, depending on the normal directions of the 

great arcs that cover the visibility region. The representation for a great arc GAij can be 

written in a five-variable format , , , ,xij yij zij ij ijV V V S E  
  

, where , ,xij yij zijV V V
  

are the 

components of the great arc GAij’s normal vector V


 along X,Y and Z axes; ,ij ijS E are the 

two ending points where the great arc GAij intersects the visibility boundary of facet Fi (Fig. 

7). The two ending points ,ij ijS E of the great arc GAij depend on the normal vector 

V


= ( , , )xij yij zijV V V
  

, as the great arc GAij at different location when the normal vector 

changes. 

 

Given a limited number of great arcs to rasterize a Visibility Cone, it is an interesting 

problem to find an optimal set of great arcs to cover the Visibility Cone.  The challenge 

β 

(I, J, K) 

Half Circle i,j 

Half Circle i,j+1 

Normal i,j 
Normal i,j+1 

β 

Fig. 8 Half circles pivoting along a common axis 

Visibility 
Arc GAij 

xij yij zijV ,V ,V
  

ijS
ijE

Visibility 
Cone 

Fig. 7 A visibility arc intersecting with a 

Visibility Cone 
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would be to ensure that the axes of rotation computed from these great arcs best approximate 

the axes of rotation of the Visibility Cone; however, it is outside the scope of this paper.  

In this research the authors used a straightforward method by which all great arcs 

used to approximate a Visibility Cone are part of great half circles pivoting along a common 

axis with a fixed interval angle, , among them (Fig. 8). The use of great arcs about a 

common pivoting axis provides a vertical relation between great arcs’ normal vectors and the 

common axis, as below:  

( , , ) ( , , ) 0xij yij zij xij yij zijV V V I J K V I V J V K       
     

-------------------------------(1) 

where I, J and K are the directional components of the common pivoting axis. 
 

In addition to this relationship, the unit sphere where ( , , )xij yij zijV V V
  

locates makes 

the magnitude of vector V


to be 1, as below: 

 
2 2 2

1xij yij zijV V V  
  

-------------------------------------------------------------------------(2) 

Conditions (1) and (2) reduce the five-variable description of Great Arcij 

, , , ,xij yij zij ij ijV V V S E  
  

to a three variable description, , ( ), ( ), ,xij xij xij ij ijV F V G V S E  
  

, where 

( )xijF V


 and ( )xijG V


are functions of xijV


. To further simplify this three variable 

representation, the pivoting axis is chosen to be one of the coordinate axes, (the Y axis in this 

case), by which ( )xijF V


=0 and ( )xijG V


=
2

1 xijV


. This makes the representation of a great 

arc to be
2

,0, 1 , ,xij xij ij ijV V S E   

 
. Through manipulation of the first three items, 

2
,0, 1 , ,xij xij ij ijV V S E   

 
 is reduced to , ,j ij ijS E   , where j  is the yawning angle of 

those pivoting great half circles with respect to the horizon. cos( )xijj a V 


, if j is less 

than 180 degrees; and 360 cos( )o
xijj a V  


 if j is greater than 180 degrees. 
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With a fixed interval angle   among half circles, angle j can be calculated 

sequentially as ( 1)j j    , where j is the sequential number of the great half circle (Fig. 

9).  For example, in this study   is given as 0.5 degree, therefore the first great half circle 

aligning with positive X axis has j=1 and 1 0o  ; the great half circle aligning with negative 

X axis has j=361 and 361 180o  .  Since visibility is computed for all facets comprising a 

polygonal model, the pivoting axis is made to be Y axis for rasterizing the Visibility Cone for 

each facet. Therefore a unit sphere rasterized with great half circles pivoting around Y axis 

will satisfy all facets of the CAD model. The Visibility Cone of each facet will be mapped 

upon this unit sphere by computing the two intersection points Sij and Eij of each great circle 

with the Visibility Cone boundary. Upon obtaining the two intersection points Sij and Eij, a 

great visibility arc is then ready for mapping to axes of rotation using the relation stated in 

section 4.2.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 9 Great half circle angle γ 
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5.2 Discretization of great half circles 

In addition to discretizing a unit sphere into a raster of great half circles pivoting 

around the Y axis with an interval angle β, each of these great half circles is further 

discretized into a circular array of points, with an interval angle α on the half circle plane 

(Fig. 10a). In this manner, the unit sphere is discretized into a spherical grid of points (Fig. 

10b). This eases both computational and implementation effort and avoids numerical 

complexity. Both the areas of the Visibility Cone and axes of rotation can be represented 

using discretized points. The number of points on a unit sphere is:  

Num (points) = M N , where M=integer (
360


) and N=integer (

360


) ------ (3) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5.3 Steps in computing the axes of rotation 

Using the rasterization process above and the relations in section 4, the axes of 

rotation for a CAD model can be computed. Each 2-D visibility great arc (GAij) corresponds 

to an area for feasible axes of rotation on the unit sphere (ARij is used to represent the area of 

axes of rotation for visibility GAij, ARij, j=1…. n).  The union of these areas (ARij, j=1…. n) 

Fig. 10 Discretization of a Unit Sphere; (a) Circular point array on a great half 

circle, (b) Sphere represented by a grid of points 

 (a) (b) 
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of all great arcs (Great Arc GAij, i=1…. n) is the set of feasible axes of rotation for facet Fi on 

the unit sphere. Therefore for a polygonal facet, the process for finding feasible axes of 

rotation begin by computing visibility and then mapping Visibility Cones onto a unit sphere 

and rasterizing with great arcs.  Then the corresponding axes of rotation areas of each great 

arc are grouped as a union to represent all feasible axes of rotation for that facet. This process 

repeats for all facets (i=1…m) and any axes of rotation shared commonly by all facets are the 

globally feasible axes of rotation for the part. This process is summarized below in the 

following steps. 

 
Steps:  
 1: Compute Visibility Cone for facet i (i=1…m) 

 2: Rasterize Visibility Cones by a set of great arcs Arc i,j (j=1…n)  

 3: Find possible axes of rotation from great arcs 

             GAij —>AR i,j (j=1…..n)  

          ARi  = ARi,1   ARi,2 …  ARi,n 

 4: Continue for all facets 

 5: Global set of axes of rotation becomes:  

           AR= AR 1   AR 2   …  AR m  

6. Implementation 

The proposed method for computing feasible axes of rotation was implemented in C 

programming language on a Pentium IV, 3.06 GHz PC running Windows XP. Several 

example parts were tested using the software; many of which have been subsequently 

machined on a CNC mill in the laboratory.  In this section, the authors provided three 

increasingly complex models, which either do or do not contain feasible axes of rotation.  A 

more complex model is illustrated to provide a detailed comparison of the difference between 

using feature-based methods and those proposed in this paper. 
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The axes of rotation found by the software are presented as points on the unit sphere, 

as described above.  However, since two antipodal points on a unit sphere are actually 

denoting one axis of rotation, only a hemisphere is rasterized with great arcs. This is due to 

the fact that for antipodal points, any point on one hemisphere can be diametrically mapped 

on to the other hemisphere. In this study, the interval angle β between any two adjacent great 

half circles to rasterize a hemisphere was set to 0.5 degrees and each half great circle was 

discretized into points with an interval angle α of 0.5 degree (Fig. 11). Using this rasterization, 

a hemisphere is approximated by 361 great half circles, each of which is discretized into 361 

points. While the relation in section 4.2 was implemented, for any point falling into the 

spherical area denoting feasible axes of rotation for a facet, the value for that point will be 

added by one. In other words, each orientation on the sphere is given a value representing the 

number of facets that it would satisfy.  Therefore, if a point’s value is equal to the number of 

facets in the model, then a globally feasible axis has been found.  Any given part model 

could have one, several, or no feasible axis that would satisfy all facets.  However, if no 

single axis of rotation exists, one 

could alternately select the axis with 

the most facet coverage.  Moreover, 

the coverage values for each axis 

could be used in a more elaborate 

decision system, for example, if the 

user was not only interested in 

visibility from an axis, but also in 

minimizing stock diameters 

required to contain the part, tool 

length requirements, stock length 

along the axis, etc.   

 

Fig. 11 Rasterization process with α=0.5o and β=0.5o

Z
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The first example illustrated in Fig. 12 yields the obvious conclusion that at most two 

mutually orthogonal square pockets can be machined using a 4-axis indexed setup; however, 

three orthogonal square pockets result in no feasible axis of rotation.  The part with two 

orthogonal square pockets has two antipodal points on the equator of a hemisphere as one 

feasible axis of rotation (Fig. 12b). This result could inform a designer about the actual 

manufacturability of a prismatic part with pockets on its sides. If there are more than two 

orthogonal pockets, the part will need more than one axis of rotation and therefore at least 

two machining setups if employing a 4-axis indexed machine. Example 2 is a simple block 

with a cylindrical thru-hole, which is used to compare feature-based versus feature-free 

analysis (Fig. 13a). Using a feature-based approach; the cylindrical thru-hole will have only 

single point visibility on top of a hemisphere and therefore one great circle as feasible axes of 

rotation, represented by the equator of the hemisphere (Fig. 13b). To illustrate the 

feature-free approach, an STL model was used to compute axes of rotation for each facet, 

which yields the result shown in Fig. 13c. The feasible axes of rotation are more than just one 

great circle as in the feature-based approach; rather, they form a spherical band on the 

hemisphere with a width of 15.5o. This suggests that a feature-free approach can lead to more 

solution sets for machining process planning. In this example, the traditional feature-based 

approach restricts the axis of rotation to be perpendicular to the hole’s visibility direction; 

whereas a feature-free approach allows the part model to tilt up to 15.5o.    

Axis of rotation 

Fig. 12 Example One: Orthogonal square pockets on a prismatic part 

X 

Y 
Z 

(a) Three orthogonal square pockets, 

with no axis of rotation 

 

(b) Two orthogonal square pockets, with 

corresponding axis of rotation 

Axis of rotation on 

unit hemisphere 
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This simple example can be illustrated as a part setup on an indexed milling machine 

using opposing indexer and tailstock chucks, as shown in Fig. 14.  In the feature-based 

approach, the part model would need to be machined such that the hole is perpendicular to 

the rotary axis (Fig. 14a); however, the feature-free analysis indicates that the part could be 

tipped from vertical (Fig. 14b).   

 

 

 

 

 

 

 

 

Of course, a practical machinist would perhaps never set up a part in the manner 

shown in Fig. 14b.  Moreover, the hole may not even be manufacturable in this setup unless 

very small diameter tools or a different cutting process was available (e.g.; Wire EDM).  

Further accessibility analysis is required; this current work is only based on visibility.  So, 

one may argue that the analysis results are not of much use; however, this is only a simple 

example. The benefits of the analysis may be more readily understood if, instead of a simple 

Fig. 13 Example Part (a) Square cube with thru-hole, (b) Feature-based approach to Axes yield the 

equator on a unit sphere, (c) Feature-free approach expands to a band about the equator 

Axes of rotation

 

15.5o

Ø=5” 

10” 

(a) 

 

Visibility 
(b) (c) 

Visibility 

Fig. 14 Setup orientations on a 4-axis indexed machine, (a) A single feature-based solution, (b) One of 

several feature-free solution results 
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hole, the “feature” was the Acetabulum of a human pelvis (the “hip socket”).  In that case, 

there are numerous complex bone surfaces forcing the setup selection down a very narrow 

solution path.  Allowing more options to access each bone surface may make it possible to 

find at least one solution; if not a “best” solution may be derived that will allow access to the 

most surfaces in one setup. 

As a more practical example, an industrial linkage represented with an STL file with 

2196 facets was tested (Fig. 15a). The axis of rotation software was executed and the results 

indicated that no axis of rotation exists for the entire linkage. Though no axis of rotation was 

found to cover all 2196 facets, there are spherical regions that have been identified to satisfy 

over 99% of the facets on the linkage model. Three spherical areas (clusters 1, 2, and 3), that 

satisfy over 99% of facets, are displayed in Fig. 15b and their details are provided in Table 1. 

Each cluster is one or a group of axes listed with the number of axes and the number of facets 

that they make visible through rotations.  The axes indicated on the hemisphere indicate that 

rotations at or around the x- or y-axis of the part will work for the most surfaces, which 

should be intuitive by observation.  It has been further verified by machining the part in the 

lab using a 3-axis Fadal VMC using a programmable 4th axis indexer.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 15 Example industrial component, (a) STL model of the part, (b) Axes of rotation results in 

clusters of axes illustrated on the hemisphere, w.r.t. the part model 

x y 

z 

 

Cluster 1 

Cluster 2 

Cluster 3

(a) (b)
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One will note that this model should have at least one axis that satisfies all facets in 

the model.  Recall, this is a facetted model created in the form of an STL model.  

Tessellation processes are inherently approximate, for example, the “straight” surfaces in a 

thru-hole become slightly tipped triangular facets.  Moreover, these representations are 

prone to errors, from degenerate facets, to flipped normals, to numerical round-off errors.  

Hence, a further challenge is to balance the problem of needing a fine resolution polygonal 

model for accurate calculations, but without egregious increases in computation time.  The 

computational complexity of computing axes for a model with n-facets is O(n2).  In these 

three examples; the block with thru-hole, block with prismatic pockets and the Linkage had 

computation times of 12, 27 and 1257 seconds, respectively.  There exist many 

opportunities to improve the method, and perhaps reduce computation times; however, that 

was outside of the scope of this paper.  In addition, one could pre-process the polygonal 

models to avoid propagating tessellation errors into the analysis.  However, the authors 

chose to present these examples as-is, to reveal the limitations and challenges of conducting 

analysis using a feature-free approach.  Regardless, these three example parts illustrated the 

effectiveness of the axis algorithm and provide support for the use of feature-free analysis in 

certain process planning problems. 

 

Cluster 

Number 

Number of 

Axes 
Number of Facets Covered 

Percentage of Facets 

Covered 

1 axis covers 2178 facets 99.18 % 

25 axes cover 2177 facets 99.13 % 1 120 

94 axes cover 2176 facets 99.09 % 

2 1 1 axes covers 2176 facets 99.09 % 

2 axes cover 2178 facets 99.18 % 

4 axes cover 2177 facets 99.13 % 3 18 

12 axes cover 2176 facets 99.09 % 

Table 1 – Axes of rotation results for the Linkage model  
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7. Conclusion 

In this paper a feature-free approach to determine feasible axes of rotation for 4-axis 

indexed processes is presented. Without relying on feature recognition, the approach can 

calculate setup orientations for arbitrarily shaped parts. It begins with visibility computation 

of facets comprising the geometric model. Next, the Visibility Cone is rasterized into great 

arcs and then each visibility arc is mapped onto axes of rotation using their geometric 

relation. This approach can also provide an expanded space for searching optimal axes of 

rotation in terms of minimum stock size, machining time, surface roughness, etc., regardless 

of whether a globally feasible axis exists. Information about potentially feasible axes of 

rotation also provides valuable feedback to designers by presenting the approximate 

manufacturability of a geometric model on a specific machine setup. Therefore the goals of 

this axis of rotation approach were twofold: (1) enable process planning for 

non-feature-based objects, and (2) provide the fundamental starting point for a potentially 

new Design for Manufacture (DFM) tool. As future research, the authors would like to focus 

on providing re-design suggestions to the designer if an axis of rotation does not exist for a 

geometric model.  It is proposed that, knowing the limited feasible set of axes, a second 

map could be generated; one that illustrates the geometry on the part that is most severely 

limiting the choice of setups.  This may allow a designer to focus efforts on changes to 

problem areas of the part that are forcing the use of expensive multi-axis machines and 

setups, when fewer may be possible.    
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CHAPTER 5.  MACHINABILITY ANALYSIS FOR 3-AXIS FLAT END 

MILLING 
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2006 

 

Ye Li and Matthew C. Frank 

 

Abstract 

This paper presents a method for geometric machinability analysis. The 

implementation of the strategy determines the machinability of a part being processed using a 

plurality of 3-axis machining operations about a single axis of rotation for setup orientations.  

Slice file geometry from a Stereolithography (STL) model is used to map machinable ranges 

to each of the line segments comprising the polygonal chains of each slice.  The slices are 

taken orthogonal to the axis of rotation, hence, both 2D and 3D machinability analysis is 

calculated for perpendicular and oblique tool orientations, respectively.  This machinability 

approach expands upon earlier work on 2D visibility analysis for the rapid manufacturing 

and prototyping of components using CNC machining. 

1. Introduction 

Machinability analysis is taking an increasingly important role as complex surfaces 

are used in the design of a wide variety of parts. Current Computer Aided Manufacturing 

(CAM) software is readily capable of generating toolpaths given a set of surfaces of a part 

and a cutting orientation (3-axis machining).  However, determining the setup orientation can 

be difficult and moreover, it may be very challenging to determine if the part can be created 

using machining at all.  An appropriate setup orientation can guarantee an effective cutting of 

the surface, while an inappropriate one will leave too much material in certain regions. The 

advancement of 5-axis computer numerically controlled (CNC) milling machines seems to 

alleviate this situation; however, often the cost and/or difficulty of programming a 5-axis 

machine have limited their widespread use. 3-axis machines, as economical and 
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technologically mature pieces of equipment, have been paid special attention with respect to 

complex surface machining if assisted with multi-setup devices (e.g. a programmable 

indexer).  Suh and Lee [1] used a 3-axis machine with a rotary-tilt type indexer to provide an 

alternative to 5-axis ball end milling. Suh et al. [2] provided a theoretic basis for machining 

with additional axes.  Recently Frank et al. [3] employed a 3-axis milling center with a 4th 

axis indexer as an effective rapid prototyping machine. End mills have been shown to offer a 

better match to the part surface geometry, a higher material removal rate, and a longer tool 

life compared to ball-mills [4].  Ip and Loftus [5] demonstrated the competency of an 

inclined end mill machining strategy on 3-axis machines in producing low curvature 

surfaces. However, to machine a surface with large curvature variation, it is necessary to 

determine a set of machining orientations and carry out multiple 3-axis machining operations 

in a sequential manner with respect to each of those orientations.  Therefore an effective 

machinability analysis is of critical importance to the successful implementation of multiple 

orientation 3-axis machining for creating complex parts.   

Many researchers have studied machinability analysis and its closely related 

workpiece setup problem. Most of the approaches are based on visibility, which is essentially 

line-of-light accessibility. Su and Mukerjee [6] presented a method to determine 

machinability of polyhedral objects. A convex enclosing object is constructed to make each 

face of the part orthogonally visible to the planes of the enclosing object. The part is then 

considered to be machinable from the normal-vector directions of the enclosing object 

planes. Later, computational geometry on the sphere was utilized to analyze visibility by 

Chen and Woo [7] who performed pioneering work on computational geometry algorithms 

that could be used for determining workpiece set-up and machine selection.  Tang et al. [8] 

formulated the problem of workpiece orientation as finding the maximum intersection of 

spherical polygons. Gan et al. [9] discussed the properties and construction of spherical maps 

and presented an efficient way to compute a visibility map from a Gaussian map. Chen et al. 

[10] partitioned the sphere by spherically convex polygons to solve the geometric problem of 

determining an optimal workpiece orientation for 3-, 4- and 5-axis ball end milling.  A 

visibility map is generated by using the normal vectors of a specified portion of the surface 

of a part, therefore it cannot guarantee global accessibility.  Yang et al. [11] computed 
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visibility cones based on convex hull analysis, instead of relying on visibility maps.  Yin et 

al. [12] defined complete visibility and partial visibility, and presented a C-space based 

method for computing visibility cones. A sculptured surface is approximated by its convex 

hull [11] and the spherical algorithms [7,13] are used in the approach of Yin [12]. The 

convex hull may in some cases have a significant deviation from the true surface. Suh and 

Kang [14] constructed a binary spherical map to compute the point visibility cone in order to 

algebraically solve machining configuration problems, including workpiece setup orientation. 

The part surface is decomposed into triangular patches. An occupancy test of the patches is 

conducted on a triangular-represented unit sphere to generate global visibility. Dhaliwal et al 

[15] presented a similar approach for computing global accessibility cones for polyhedral 

objects, but with exact mathematical conditions and algorithms. Balasubramaniam et al. [16] 

analyzed visibility by using computer hardware (graphics cards).   Frank et al. [17] analyzed 

2D global visibility on STL slices and searched the necessary machining orientations for 4th 

axis indexable machining by executing a Greedy search algorithm. All these visibility-based 

approaches determine the necessary condition for machinability; however, they ignore tool 

geometry and therefore true accessibility (machinability) is not guaranteed. Figure 1 shows 

that the accessibility cone (α,β) based on line-of light visibility cannot guarantee the true 

accessibility using a sized tool in machining a segment ij .   

 
Fig. 1   Accessibility based on light ray and a sized tool 

i j 

α

β

i j

A line-of-light ray A sized tool

(a) (b)
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Su and Mukerjee [6] took into account the cutter information by constructing a new 

part model through offsetting the original part surface by the amount of the cutter radius. 

Machinability was further guaranteed by checking the topology of this offset part surface.  

This method is effective for the machinability analysis of a ball end cutter, but not for that of 

a flat end cutter, because the effective radius of a flat end cutter is variable with the change of 

tool tilting angle.   Haghpassand and Oliver [18] and Radzevich and Goodman [19] 

considered both part surface and tool geometry.  However, tool size was not taken into 

account due to the fact that Gaussian mapping does not convey any size information of the 

part surface and/or the tool.  Balasubramaniam et al. [16,20] verified tool posture from 

visibility results by collision detection before interpolating the toolpath for 5-axis machining.   

Over the past years, feature-based technologies have been an active field among the 

manufacturing research community. Regli[21],  Regli et al [22], and Gupta and Nau [23] 

discussed feature accessibility and checked it by calculating the feature accessibility volume 

and testing the intersection of the feature accessibility volume with the part.  Gupta and Nau 

[23] recognized all machining operations that could machine the part, generated operation 

plans, and checked and rated different plans according to design needs. A comprehensive 

survey paper on manufacturability by Gupta et al. [24] reviewed representative feature-based 

manufacturability evaluation systems. Recently, Shen and Shah [25] checked feature 

accessibility by classifying the feature faces and analyzing the degree of freedom between 

the removal volume and the workpiece. The MEDIATOR system reported by Gaines et al. 

[26] used the knowledge of manufacturing equipment to identify manufacturing features on a 

part model. Accessibility is examined by testing the intersection of removal volumes with the 

part. Faraj [27] discussed the accessibility of both 2.5 D positive and negative features. Other 

researchers presented featured-based approaches to determine workpiece setups [28-31].  

Although feature-based approaches are capable tools to handle feature-based design, 

they cannot lend themselves to free-form surfaces where definable features may not exist. In 

addition, feature-based approaches suggest that all the geometric elements comprising of a 

feature are treated together as an entity. This actually imposes a constraint to the analysis of a 

part model.  For example, it might be feasible to machine a portion of a part feature in one 

orientation and then finish the remaining surfaces of the feature in one or more successive 
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orientations.   The current problem that this paper addresses is based on a rapid machining 

strategy proposed by Frank et al. [3] whereby a part is machined with a plurality of 3-axis 

machining operations from multiple setup orientations about a single axis of rotation.  

The strategy is implemented on a 3-axis CNC milling machine with a 4th axis indexer 

(Fig. 2).  Round stock material is fixed between two opposing chucks and rotated between 

operations using the indexer. For each orientation, all visible surfaces are machined using 

simple layer-based toolpath planning.  By setting the collision offset (b) (shown in the Fig. 2) 

on each side of the workpiece, the implementation of rapid machining can avoid the risk of 

collision between tool holders and the holding chucks. The diameter of largest tool (Dtmax) 

used to calculate the collision offset (b) makes the setting of collision offset for each new part 

unnecessary. The feature-free nature of this method suggests that it is unnecessary to have 

any surface be completely machined in any particular orientation. The goal is to simply 

machine ALL surfaces after ALL orientations have been completed. The number of rotations 

required to machine a model is dependent on its geometric complexity. Figure 3 illustrates 

the process steps for creating a typical complex part using this strategy.  

            

 

 

 

 

 

 

Currently, the necessary cutting orientations are determined by 2D visibility maps 

with tool access restricted to directions orthogonal to the rotation axis. Cross sectional slices 

of the geometry from an STL model are used for 2D visibility mapping. The visibility of 

those slices approximates the visibility of the entire surface of the part along the axis of 

rotation since the slices are generated orthogonal to that axis. The above literature review 

suggests that existing approaches to machinability cannot calculate the set of orientations for 

a
b 

c 

Dh 

tailstock 
chucks 

indexer

stock 
  Stock length:  c  = Lp + 2a + 2b       

  where: Lp = Part length 

  a = Clamping length 

  b = Collision offset (x) = .5Dh +.5Dtmax

  Dh= Diameter of tool holder 

  Dtmax= Diameter of largest tool 

Fig. 2  Setup for rapid machining 
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setups such that one can machine ALL machinable surfaces after ALL orientations, because 

1) either 2D or 3D visibility cones employed by the visibility-based approaches convey no 

size information of the tool and workpiece and therefore cannot guarantee true accessibility; 

or 2) the feature-based approaches cannot cope with complex (freeform) surface machining, 

because few traditional features can be identified on parts with freeform surfaces. 

An effective machinability 

analysis method is a prerequisite to 

the successful implementation of 

multi-setup 3-axis end milling in order 

to achieve the needs of 4- and perhaps 

5-axis machining.  An effective 

machinability analysis method will 

determine, given a machining 

orientation and an end mill of a 

particular size, how much of the part 

surface can be machined with respect 

to this machining orientation. The 

focus of this paper is to present a 

feature-free machinability analysis 

that can determine the number of 

setups required to completely machine 

the surfaces of a part with one axis of 

rotation setups.  The machinability 

analysis method presented in this 

paper is unlike any previous work in 

its completely feature-free treatment of the part geometry.  We reduce the surfaces of the part 

down to simple line segments on the slices, therefore any CAD model can be exported as an 

STL file and studied.  This approach is done because we are only assuming that the part is 

machined about one axis of rotation, therefore it is much simpler to simply analyze the 2D 

slices rather than 3D surface geometry.   

Fig. 3   Process steps for rapid machining 
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The remainder of this paper is organized as follows. In the second section, definitions 

that are used throughout this paper are presented. The third section discusses the 

machinability analysis method in further detail. The fourth section presents the 

implementation of the machinability analysis approach. Lastly, conclusions and future 

research endeavors are provided. 
2. Definitions 

Although previous researchers have defined the concepts of Visibility and 

Machinability in their work, similar definitions are provided first in this section to clarify the 

difference between Visibility and Machinability. Next, the concept of Tool Space, Obstacle 

Space and Machinable Range are introduced. A condition to determine the existence of 

Machinability is also derived. The definitions provided in this section are used for the 

subsequent discussion in the remainder of this paper. 

 Visibility: A point p on a surface S (pS) is visible by a light ray emanated from an   

external point q if pq  suffices the condition of pq  (S-p)=Ф. 

 Machinability: A point p on a surface S (pS) is machinable by a certain type and size of  

tool T(CL,α) if pT(CL,α) and T(CL,α)  (S-p) =Ф. T(CL,α) represents the tool surface at the 

cutter location CL, approaching from the  orientation α. 

By definition, machinability shares the same concept of accessibility with visibility, 

but differs in the sense that machinability takes into account the size and shape of the cutting 

tool instead of treating it simply as a line-of-light. Therefore machinability can guarantee true 

accessibility while visibility is only a necessary condition of machinability. Hence, the 

aggregate of orientations satisfying machinability is a subset of that satisfying visibility. In 

other words, machinability can guarantee visibility, but not vice versa.  

Unlike the expression of visibility in angular orientations, the bundle of which forms 

a cone,  there are two parameters used to describe machinability.  They are the cutter location 

CL and the approaching orientation α, if the type and size of a cutter are specified. 

Machinability with respect to an approaching orientation α exists only if there is a cutter 

location that allows the cutting tool to approach and  touch the point p without intersecting 

any other part surface.     
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Similar to the concept of the visibility of a feature,  the machinability of a feature ( a 

line, a curve, or a patch of surface that is geometrically composed of a set of points) is the 

intersection of the machinability of each point belonging to that feature. Similar to the 

concept of Partial Visibility (PV),  Partial Machinability (PM) of a feature can also be 

defined in addition to the concept of Complete Machinability (CM).  

 Partial Machinability (PM): A feature is partially machinable along an orientation α  if 

there exists at least one point on that feature such that no cutter location CL exists for it to 

suffice the condition of  pT(CL,α) and T(CL,α)  (S-p) =Ф. 

 Complete Machinability (CM): A feature is completely machinable along an orientation α  

if for each point on that feature at least one cutter location CL can be found to guarantee the 

condition of  pT(CL,α) and T(CL,α)  (S-p) =Ф. 

 Notice that Complete Machinability (CM) may exist for either a point or a feature, 

while Partial Machinability (PM) exists only for a feature, because a point can only be said 

to be either machinable or non-machinable.    

If machinability exists with repect to an approaching orientation α, the number of 

feasible cutter locations CLs may vary with different points on a surface.   Points with more 

feasible cutter locations CLs translates to easier machining because the more possible CLs 

provide more options for tool path and setup planning.  The need to measure the space of 

cutter locations leads to the concept of Tool Space. 

 Tool Space (TS):  The aggregate of all feasible cutter locations to cut a point p from an 

orientation α forms a region called Tool Space, written as TS (p, α) = {CL: pT(CL,α) and 

T(CL,α)  (S-p) =Ф}.    

Tool Space of a feature F is the union of the Tool Space of every point belonging to 

F, that is, TS (F) = {  TS (p, α): pF}. A Tool Space (TS) reaches its maximum value 

Maximum Tool Space (MTS) when there is no obstacle around the geometric entity. Here we 

consider the entire part surface except the portion under consideration to be obstacles. Thus 

the corresponding space for obstacles is defined as Obstacle Space.  

 Obstacle Space (OS): The aggregate of all unfeasible cutter locations with respect to an 

orientation α due to the existence of an obstacle i (Obi) is called the Obstacle Space of 

obstacle i, written as OS (i, α)= {CL: T(CL,α)   Obi ≠Ф}.    
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The cutter cannot enter the domain of Obstacle Space because it will gouge into the 

obstacle.  

Tool Space can be computed by subtracting all the Obstacle Spaces from Maximum 

Tool Space. 

                            TS=MTS -
i

OS ----------------------------------------------------------------------(1) 

If the computed Tool Space using the above equation is not empty, then machinability 

exists; otherwise the geometric entity is non-machinable. The machinability analysis method 

presented in this paper is based on this equation. Tool Space is actually a measure of 

machinability since it tells the existence of machinability and the magnitude of 

machinability, if it exists.  

Once the Tool Space is determined, the Machinable Range resulting from it can be 

obtained.  

 Machinable Range (MR): The maximum machinable portion of a feature given the Tool 

Space is called Machinable Range (MR) of that feature, written as MR= {p: pF and TS (p, 

α) ≠ Ф}. 

The above definitions will be used throughout the remainder of this paper.   

3. Machinability Analysis 

The machinability analysis approach presented in this paper is based on the concept 

of Configuration Space (C-space). The concept of C-space first applied in robotic spatial 

motion planning was documented by the work of Lozano-Perez [32]. The basic idea of C-

space is to find the aggregate of the valid spatial configurations for a moving mechanism in 

an environment with obstacles around it.  Recently C-space has been applied in tool path 

planning for multi-axis machining. Choi et al. [33] presented a C-space based approach to 

generate 3-axis NC tool paths for sculpture machining by transforming the designed part 

surface and stock-surface into elements in C-space and treating the cutter as a moving object 

in the safe space. The C-space is represented and computed using a Z-map model of the part. 

Choi and Ko [34] incorporated C-space into computer automated process planning (CAPP) 

for freeform die-cavity machining. Morishige et al. [35] used C-space to generate tool paths 

for 5-axis ball end milling. Jun et al. [36] optimized tool orientations for 5-axis flat end 
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milling by a search method in C-space. C-space of the cutting tool, which is defined as tool 

space in Section 2 of this paper, provides the safe space for tool path planning, therefore tool 

paths based on C-space are always gouge-free and collision-free. The tool space can be seen 

as the aggregate of all possible tool paths. If tool space exists, then at least one tool path can 

be generated to machine the corresponding geometric point on the part surface, and hence 

this point has machinability. Therefore, by testing the tool space of each point on a surface, 

the machinability of this surface can be theoretically determined.  

The input for the machinability method of this paper is the slice file of an STL model 

of the part along the intended axis of rotation.  An STL model is an approximation of the part 

surface by using triangular facets and is currently the de-facto standard file format for rapid 

prototyping systems. The tessellation process to create an STL model can keep the 

approximation error, the deviation between the part surface and the tessellation triangles, 

within a specified tolerance.  The size and shape of each triangle created is adaptive to its 

local region on the part surface.  Therefore, compared to the Z-map model employed by Choi 

et al. [33], which is essentially a virtually equal-spacing sampled model, the slice file of an 

STL model is a more precise and efficient representation of the original part surface. The 

slicing process for the STL model of the part, which may be either a feature based part or a 

freeform geometry, breaks the part surface into many line segments comprising the 

polygonal chains of each slice.  These line segments are essentially the only representation of 

a “feature” in the method presented in this paper.    In this manner, it is not important that any 

set of segments be machinable in any particular setup orientation.   The intent is to map the 

segments or portions of segments machinable from each orientation α, in order for a 

minimum set of orientations to be found such that all segments are machined after all setup 

orientations are completed.  

Each line segment of the slice file is either perpendicular or oblique with respect to 

the tool approach orientation. If the perpendicular case occurs, the obstacles and their 

corresponding obstacle spaces for each point on that line segment are the same. This is 

actually a static-obstacle case. A 2-dimensional C-space analysis can be performed for all 

those points at the same time, considering all the adjacent segments above the segment to be 

obstacles. Section 3.1 discusses the perpendicular case in more detail.  However, if the line 
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segment to be checked is oblique with respect to the tool approach orientation, the obstacles 

for each point on that segment are variable. This dynamic-obstacle environment creates 

difficulty for the machinability analysis process. The solution for this case will be presented 

in Section 3.2.  

3.1 Perpendicular Case 

The coordinate system used in this paper is consistent with that of a 3-axis milling 

center, whereby the slicing of the part occurs along the X-axis of the machine coordinate 

frame and each slice is in the Y-Z plane (Fig. 4(a)).  We use 1,, jiji PP to represent a segment 

that is currently undergoing the machinability analysis process, where i denotes the number 

of the slice on which that segment resides, and j and  j+1 denotes the two consecutive points 

forming that line segment. In the case where the segment 1,, jiji PP is perpendicular to the tool 

cutting orientation, all the segments on slice i and its adjacent slices with a portion having a 

greater height than that of 1,, jiji PP along the tool cutting orientation are obstacles. The 

obstacle spaces associated with these obstacles remain  unchanged for the analysis of every 

point on 1,, jiji PP .  In this situation, the cutting tool is moving in an environment with static 

obstacles. The problem is simplfied as finding the tool space for segment 1,, jiji PP  as a 

geometric primitive on a 2-dimensional plane, instead of analyzing each point separately.  

Figure 4(a) shows that there are left obstacles and right obstacles on each side of segment 

1,, jiji PP . Obstacles may also exist on the slice where 1,, jiji PP resides.  Plane π contains 

segment 1,, jiji PP  and is perpendicular to the tool cutting orientation α. Any segment that has 

a portion above plane π is considered an obstacle. Figure 4(b) is the top view of Fig. 4(a). 

The boundary of the maximum tool space and the obstacle spaces are constructed by 

offsetting segment 1,, jiji PP and  obstacle segments by the amount of the tool radius. The 

curves in the dash-dot line (  )denote the boundaries of left obstacle 

space(
m

OS (Lm, α)) and right obstacle space(
n

OS (Rn, α)). The curves in the dashed 

line (  ) denote the boundaries of current slice obstacle space (OS (i, α)) and the 

closed curve in the continuous line (  )denotes the boundary of the maximum tool 
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space (MTS). The actual Tool Space (TS) represented by the shaded region in Fig. 4(b) is 

computed using Eq. (1) as follows: 

TS=MTS -
m

OS (Lm, α) - 
n

OS (Rn, α) - OS (i, α)  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

If Tool Space results in an empty set, then the segment 1,, jiji PP  contains no 

machinable portion. If Tool Space exists, then the Machinable Range (MR) boundary can be 

obtained by offsetting the boundary of Tool Space by the amount of the tool radius (Fig. 

4(c)).   It should be noted that the Tool Space may consist of several sub-regions in practice 

(The Tool Space shown in Fig. 4(b). consists of only one region). Therefore, the Machinable 

Range may also be separated into sub sections. If the Machinable Range subsections cover 

Fig. 4   Illustration of machinability for perpendicular case 
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the entire segment, 1,, jiji PP , that is, 1,, jiji PP  


MR , then segment 1,, jiji PP has Complete 

Machinability; otherwise it only has Partial Machinability. Figure 4(c) shows that 1,, jiji PP  

has Partial Machinability and the portions outside of the Machinable Range boundary are 

non-machinable portions of segment 1,, jiji PP .   

3.2 Oblique Case  

3.2.1 Dynamic-Obstacle environment 

For most cases, the cutting orientation is not perpendicular, but oblique to the line 

segment being analyzed for machinability. This makes the machinability analysis 

significantly different from the previously described perpendicular case that only had static 

obstacles. The fundamental reason is that the static-obstacle machinability analysis approach 

based on 2-dimensional C-space does not work for the oblique case, which is characterized 

by dynamic-obstacles. The maximum tool space for machining each point under the oblique 

case is invariantly a half-circle arc, which is shown in Fig. 5.  However, the obstacle spaces 

that the points on 1,, jiji PP are subject to are dynamically changing as the point under analysis 

Fig. 5  Illustration of maximum tool space under oblique cutting

 (a) Maximum tool space of a point  (b) Top view of maximum tool space  
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is moving along 1,, jiji PP . Figure 6 shows segment 1,, jiji PP  on slice i and an obstacle 

segment 1,,  knikni PP on adjacent slice i+n. Polygon knikniknikni PPPP ,1,1,, ''   is the obstacle 

polygon resulting from segment 1,,  knikni PP  with respect to the cutting orientation α.   It is 

clear that the effective obstacles affecting point P1 and P2, denoted by Ob1 and Ob2 

respectively, are different, even though they are caused by the existence of the same obstacle 

segment 1,,  knikni PP . Hence, the obstacle spaces associated with these two obstacles are also 

different. The variation of obstacle spaces is due to the fact that the heights of the points on 

1,, jiji PP with respect to the cutting orientation α are different from one another. The obstacle 

spaces of a certain height are determined by the projections of the obstacle segments above 

that height on the plane perpendicular to the cutting orientation α at that height.  This is 

actually a problem of 3-dimensional C-space. The Tool Space for 1,, jiji PP could be computed 

by constructing a 3-dimensional C-space. However, since the “part surfaces” being worked 

on consist of segments from STL slice geometry, there is no information about what kind of 

feature 1,, jiji PP resides on and/or the local surface description in the vicinity of 1,, jiji PP . 

Therefore, testing machinability by constructing a 3-dimensional C-space for each segment is 

inappropriate. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6  Variation of effective obstacles 
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3.2.2 Relative movement of effective obstacles 

Although the entire 3-dimensional C-space will not be constructed for each line 

segment, the effective obstacle spaces of each obstacle segment at different heights can be 

considered to have relative movement with the point under analysis if one sets a convention 

for machinability analysis. Referring to the example in Fig. 6, if one analyzes the point along 

the direction traversing the line segment 1,, jiji PP , the relative linear movement of the 

effective obstacles shows three stages where machinability is affected. They include stage 1 

where the obstacle space begins to gouge into the maximum tool space  (Fig. 7(a))  and the 

gouged tool space increases (Fig. 7(b)) until it reaches its maximum gouged tool space 

arc, mUmL   (Fig. 7(c)), stage 2 where the obstacle space maintains its maximum gouged tool 

space arc mUmL   (Fig. 7(c) to Fig. 7(d)); and stage 3 where the obstacle space begins to 

move away from Om, the point being examined. Gouged tool space then begins to decrease 

(Fig. 7(e)) until the obstacle space does not affect machinablity (Fig. 7(f)). In Fig. 7, ∆ 

denotes the slicing spacing; k∆ is the distance from the slice i to slice i+k, where the obstacle 

segment is located. The variable d is the relative distance of the effective obstacle segment to 

the segment under analysis. EF represents the effective obstacle, Point F moves along edge 

knikni PP ,1,   and knikni PP ,, '  , and point E moves along edge 1,1, '  knikni PP  of the polygon 

knikniknikni PPPP ,1,1,, ''   in Fig. 6.  The variable ds denotes the distance from F to Om along 

the Y axis, at which tool space begins to be gouged by the obstacle space of EF; while dm 

denotes the distance from F to Om along the Y axis, at which the maximum gouged tool 

space is reached (Fig. 7(c)), and also denotes the distance from E to Om  along the Y axis, at 

which gouged tool space begins to reduce (Fig. 7(d)). From Fig. 7. it can be seen that if there 

exists a point EFp with its distance to Om along the Y axis equal to dm, then the maximum 

gouged tool space can be attained. The variable de denotes the distance from point E to Om 

along the Y axis, at which the tool space becomes unaffected by the obstacle space of EF. 

Notice that each obstacle segment may have all or only one or two of these three typical 

stages in practice depending on the relative location of the obstacle segment and the segment 

under analysis. This will be discussed further in section 3.2.3.  
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For the above case, once the stage the effective obstacle belongs to and the value of d 

is known, the gouged tool space arc (θdL, θdU) can be computed as follows:  

For Stage 1 where sm ddd   
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Fig. 7  Variation of machinable range due to the existance of an obstacle segment 
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             R is the tool radius. 

3.2.3 Characterization of the relative movement 

The above discussion demonstrates that the relative movement of the effective 

obstacle with respect to the point under analysis provides the information necessary to 

calculate the gouged tool space resulting from the corresponding effective obstacle space, 

and thus the Tool Space can be computed. Therefore, if the relative movement of each 

effective obstacle with respect to the point under analysis can be precisely determined, then 

machinability can be computed without constructing a 3-dimensional C-space.  

Geometric transformation 

The relative movement of each effective obstacle with respect to the point under 

analysis can be precisely determined by performing a geometric transformation to both the 

segment to be analyzed and the obstacle segment.  

Consider an inclined  line segment 1,, jiji PP ( ),(),( 1,1,1,,,,  jijijijijiji zyPzyP ) on slice i, 

and suppose that zi,j  is greater than zi,j+1 (zi,j >zi,j+1) (Fig. 8.). The  parameter t is from the 

parametric representation of  1,, jiji PP .  The parameter t is 0 at the end point with smaller Z 

coordinate and is 1 at the end point with greater Z coordinate. For the segment 1,, jiji PP  

shown in Fig. 8, t is 0 at 1, jiP  and is 1 at jiP , .  Point E(yE,zE) is an arbitrary point in the plane 

Y-Z and lies on line AB, determined by point A(yA,zA) and B(yB,zB). Point E can be 
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transformed and mapped uniquely as a point E’(dE,tE) in plane D-T as shown in Fig. 8. The dE 

is the horizontal distance from E to line 1,, jiji PP along the Y-axis.  It is the distance from E to 

IE(yiE, zE), the intersection point of line Z=zE  and the line where segment 1,, jiji PP  lies. The tE 

is the parametric value at the intersection point IE. Similarly A and B are mapped as A’ and B’ 

in plane D-T. The transformation from a 2D plane Y-Z to the 2D plane D-T (D-T 

transformation) can be represented as a map F: R2   R2 of the form  

                                                     NpMpF )(  
 

for all point pR2, where 
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Mapping an obstacle polygon on D-T plane 

Based on the D-T transformation, an obstacle segment on adjacent slice i+m 

1,,  kmikmi QQ  and its associated obstacle polygon kmikmikmikmi QQQQ ,1,1,, ''   (Fig. 9) can be 

mapped onto D-T plane as  segment 1,, **  kmikmi QQ  and obstacle polygon 

Fig. 8  Geometric transformation 
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kmikmikmikmi QQQQ ,1,1,, '*'***  (Fig. 10). The coordinates of 

kmikmikmikmi QQQQ ,1,1,, '*,'*,*,*   are (di+m,k,ti+m,k), (di+m,k+1,ti+m,k+1), (di+m,k+1, 0), and 

(di+m,k,0) respectively. Any line segment formed by truncating a horizontal line in the D-T 

plane by the boundary of the obstacle polygon kmikmikmikmi QQQQ ,1,1,, '*'***  is actually 

the effective obstacle of 1,,  kmikmi QQ at the height t along the T-axis, as shown in Fig. 10.  

The end point with a smaller D value can be considered as a front point and the one with a 

larger D value can be considered as a rear point. The front points and rear points of all the 

effective segments resulting from 1,,  kmikmi QQ form the front point trajectory and the rear 

point trajectory. In Fig. 10, the  front point trajectory is kmikmi QQ ,, '**   and the rear point 

trajectory is 1,, **  kmikmi QQ  and 1,1, '**  kmikmi QQ .  

The three stages discussed in section 3.2.2 can also be reflected clearly on the 

obstacle polygon in plane D-T, as illustrated in Fig. 10. JK , along the front point trajectory, 

truncated by the line d=ds and d=dm, corresponds to stage 1, KG , along the line d=dm 

truncated by the front point trajectory and the rear point trajectory corresponds to stage 2, and 

GH , along the trajectory of the rear point, truncated by line d=dm and d=de, corresponds to 

stage 3.  As mentioned previously, not all the obstacle segments possess all of these three 

Fig. 9  An obstacle polygon in Y-Z plane 
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stages.   How many stages an obstacle segment may have depends on the shape of the 

obstacle polygon in the D-T plane. The mapping of these three stages onto the plane D-T can 

provide a precise calculation for the gouged tool space, because given a t value, the 

corresponding d value, which denotes the relative distance of the segment under analysis and 

one obstacle segment, can be easily mapped on plane D-T and therefore the gouged tool 

space can be precisely calculated with the d value, using the method described in section 

3.2.2.  

So far we have shown that d is a function of t and gouged tool space is a function of 

d. Therefore, the gouged tool space can also be considered as a function of t. This leads to the 

construction of a graph of machinability versus the parameter t for each line segment to be 

examined.   

3.2.4 Machinability graph 

Figure 11 illustrates the composition of the machinability graph for line segment 

1,, jiji PP  under the interference of one obstacle 1,,  kmikmi QQ . It consists of the same three 

stages as those shown in Fig. 10 and is bounded by two curves: Upper boundary curve θU  

and Lower boundary curve θL. The region bounded within these two curves is the gouged 

tool space obstructed by the obstacle 1,,  kmikmi QQ  and is denoted as 1,,  kkmiOS . The 

rectangular frame shown in Fig. 11 with length 1 and width π is the maximum tool space 

Fig. 10  An obstacle polygon in D-T plane 
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(MTS).  Once the gouged tool space for each obstacle segment is obtained, the machinability 

analysis can be conducted by computing MTS - 
n k

kkniOS 1,, . If the subtraction operation 

yields an empty result, then the segment 1,, jiji PP  is not machinable with respect to the 

machining orientation. Otherwise this segment is at least partially machinable.    

Since the upper boundary curve θU and lower boundary curve θL are not of regular 

shapes, the analytic computation of tool space is not feasible. In this paper, a sweeping line 

method was used to incrementally check the existence of tool space. The steps to the method 

are as follows: 

Step 1: Assign ts to t. (ts can be either 1 or 0, depending on the incremental direction). 

Step 2: Check and store the intersections of line t=ts with the upper and lower 

boundary curves of each obstacle segment 1,,  kmikmi QQ . 

Step 3: If there is no intersection, then t=ts is machinable. Go to Step 8. If there are 

intersections, sort all the intersections in decreasing order into a sequence.  

Step 4: If the maximum intersection is less than 180o, or the minimum intersection is   

greater than 0o, then t=ts is machinable. Go to Step 8. Otherwise search the reverse order pair 

in the intersection points list. The reverse order pair is defined as a lower intersection point 

(LIP, an intersection with a lower boundary curve) immediately in front of an upper 

intersection point (UIP, an intersection with an upper boundary curve) in the sorted 

intersection points sequence.  

Fig. 11  Machinability graph
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Step 5: If there is no reverse order pair, then t=ts is non-machinable. Go to step 8: 

Otherwise store the reverse order pairs. 

Step 6: For each reverse order pair j, check the number of net upper intersection 

points (Num_NUIP) before reverse order pair j(denoted by <j)  and the number of net lower 

intersection points (Num_NLIP) after reverse order pair j (denoted by >j) in the intersection 

points sequence. 

Num_NUIP(<j) =number of UIP (<j) - number of LIP(<j) 

Num_NLIP (>j) = number of LIP(>j) - number of UIP(>j) 

Step 7: If Num_NUIP=1 and Num_NLIP=1, then t=ts is machinable.  If 

Num_NUIP>1 and Num_NLIP>1, then t=ts is non-machinable. 

Step 8: Update t by an increment and check if stopping criterion is met. If not met, go 

to Step 1. 

4. Implementation 

To validate the approach proposed in this paper, the machinability algorithms were 

implemented in C programming language on a Pentium IV, 3.06 Ghz PC running window 

XP. The machinability software uses slice-visibility data, the size of the flat-end tool chosen 

and a specified cutting orientation as inputs.  It generates the machinable portion of each slice 

segment with respect to the cutting orientation as output. We present two example part 

surfaces to verify the machinability analysis approach.  The first part was chosen to be quite 

simple so that the non-machinable regions should seem intuitive to the reader.  The second 

part is a more complex part, a toy “jack”, and this part is evaluated with 3D inspection 

software that is used for reverse engineering. 

4.1 Example 1 

Fig. 12(a) shows a block with a half cylindrical extruded cut.  We chose the direction 

of 45 degrees on a plane orthogonal to the axis of rotation as the cutting orientation. The flat 

end tool diameter is set to be 0.25inch (6.35mm). The slice spacing is 0.01 inch (0.254mm).   

Results from the machinability analysis are displayed in Fig. 12(b), which indicates that there 

are two non-machinable regions, denoted as S1 and S2. Since this model is an extrusion, the 

geometric shape along the axis of rotation does not change. Therefore, the results of the 

machinability analysis of this part should be the same on every slice along the axis of 



www.manaraa.com

 
 

 

95

rotation. The machinable profile of one slice is displayed in Fig. 14(a). O-A-B, C-D and E-F-

G are machinable regions while B-C and D-E are non-machinable regions. This part was also 

virtually machined in Mastercam. A screen shot of the part being virtually machined from a 

block of material is shown in Fig. 13.  The virtually machined volume was saved as an STL 

file and imported into Rapidform 2004(reverse engineering software). Figure 14 (b) shows a 

cross-sectional profile of this STL by using the inspection function of Rapidform. The 

orientation of the profile displayed in Fig. 14 (b) is 45 degree with respect to the horizon, the 

same direction as the machining set-up shown in Fig. 13. O’-A’-B’, C’-D’ and E’-F’-G’ are 

S1

S2 

Fig. 12   Machinability of a half cylinder extrusion pocket 

(a) Half cylinder extrusion pocket model (b) Machinable surface 
Axis of Rotation 

45o

Fig. 13   Screen shot of example part 
virtually machined in MasterCAM 
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the machinable regions while B’-C’ and D’-E’ are the non-machinable regions in Fig. 14 (b). 

To verify the results from the machinability analysis, two local coordinate systems are set up 

on point O (X-O-Y in Fig. 14 (a)) and O’ (X’-O’-Y’ in Fig. 14 (b)), respectively.  

Coordinates of the non-machinable boundary points B, C, D, E are computed from the results 

of the machinability analysis software we developed and then the coordinates of B’, C’, D’, 

E’ are measured in RapidForm 2004.  The coordinates of the points from each approach are 

shown in Table 1.  The data are very close, and the error is within that which can be expected 

using an STL approximation and a line-sweeping algorithm for finding machinable regions.   

 

A 

B 

O 

C 

D 

E F

G

X 

Y 
45o

O’

A’
B’ C’

D’

E’

F’ 

G’
X’Y’

45o

Part 

Stock Stock

Fig. 14   2D views of machinable profiles 

(a) Result of our machinability analysis (b) Result from virtual machining

Table 1 Boundary point coordinates of non-machinable regions 
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4.2 Example 2 

The second part model used as an example is a toy “Jack” that is analyzed first for 

visibility and then for machinability using the approach of this paper. Figure 15  (a) shows 

the STL-model of the  “Jack”.  The visibility software developed previously [17] first 

processed this model and gave the result that the model is 100% visible through four 

orientations {50o, 155o, 228o, 335o}. To demonstrate the deficiency of visibility analysis, the 

“Jack” model was machined with these four orientations using a 0.125 inch (3.175mm) 

diameter flat-end tool.   Figure 15 (b) shows the machined “Jack” with non- machinable 

regions indicated by the four rectangles.   

Since the shape of slices of the “Jack” model varies along the axis of rotation, the 

non-machinable regions change accordingly and therefore are not regular shapes. To 

demonstrate that the machinability analysis approach can predict the non-machinable 

regions, we virtually machined the “Jack” from a 50-degree orientation in Mastercam and 

saved the result as an STL file after virtual machining. The file was imported into RapidForm 

2004 and was overlapped with the original CAD model.  Using the inspection function of 

Rapidform, we are able to map the deviations of the machined STL model to the original part 

model. Figure 16 illustrates the virtually machined surface (in MasterCAM) by rotating the 

part model to a 50-degree orientation. The region marked by the circle contains the non-

50o

155o 

  

228o 335o

Axis of Rotation 

Fig. 15  Machining result of a “Jack” model 

(a) “Jack” model (b) Machined “Jack” 
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machinable surfaces. Figure 17 (b) illustrates the deviation results from RapidForm 2004. 

The part model is displayed in point shading mode to indicate the surface profile. Figure 

17(a) illustrates the results from our machinability analysis software, which corresponds well 

with the graphical display in Fig. 17 (b).  

The above examples indicate that the machinability software not only predicts 

machinable/non-machinable regions for a sliced STL model but also determines the exact 

coordinate locations of its machinable/non-machinable portions. Therefore, given a cutting 

orientation and a sized tool, the precise locational information of the machinable and non-

machinable regions can be obtained, thus providing a tool for product designers in evaluating 

the manufacturability of a particular design. Another application could be found in 

determining the minimum number of setups for machining a part using an indexable 4-axis 

machine with respect to one rotation axis.   This could be realized by first running the 

machinability software for cutting orientations from 0o up to 360o at the interval of a 

specified incremental angle, and then searching for the minimum number of setup 

orientations using an optimization algorithm.  In this manner, the machinability analysis 

presented in this paper is not relegated to a verification tool, rather, the information it 

provides can be used to calculate machining setup information and for toolpath planning.           

Fig. 16  Machined “Jack” surface in Mastercam 
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5. Conclusions and Future Research 

This paper presents a machinability analysis approach for 3-axis flat end milling 

based on the concept of C-space.   The approach is intended to find the true accessibility, 

which is often approximated by the visibility of line-of-light. The input information is the 

STL slice file of a geometric model with restriction to one axis of rotation. The model can be 

either feature-based or feature-free, as the machinability analysis approach presented in this 

paper does not require feature recognition. Instead, it analyzes basic geometric primitives, 

line segments from the STL slice file. In addition to checking 2D machinability, the analysis 

approach can handle 3D machinability by constructing a machinability graph.  The results of 

this analysis yields the portions of the surface segments machinable from a given orientation 

and tool.  The expectation is that the machinability results can be used to determine the 

minimum set of setup orientations necessary to machine all surface segments using simple 3-

axis milling operations.   Currently our approach is restricted to 3-axis flat end milling. The 

machinability analysis of ball-end mills and fillet-end mills may be the focus of future 

research.  In addition, how to extend the current research to the application of 4-axis or 

perhaps 5-axis milling will likely be another consideration.  

 

Non-machined regionsNon-machined regions

Fig. 17  Identification of non-machinable regions for “Jack” 

(a) Result of machinability analysis (b) Graphical display of deviation in RapidForm  

Inch
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CHAPTER 6.  FUTURE WORK AND CONCLUSION  

Future Work 

The three manufacturability indicators presented in this research hierarchically 

analyze the manufacturability of non feature-based objects. Potential manufacturing 

difficulty is then fed back to a designer upon detection for further modification. This is a 

process where CAD models are checked for manufacturability. In the case of feature-based 

models, this checking process might be sufficient, followed by modification of any 

non-manufacturable features based on the designer’s knowledge and the parametric 

information for each type of feature.  However, in the environment of non feature-based 

geometries, perhaps manufacturability analysis would not stop at the checking stage; rather, it 

would have the capability of guiding the designer towards a more manufacturable design.  

The subtle difference is assumed to be on the very nature of the design models.  In 

feature-based models, there are definable boundaries and inter-relationships between the 

features (a bolt-hole array, for example).  In contrast, a non feature-based model, such as an 

organic shape reverse engineered from a sculpture does not have the same distinct boundaries, 

intersections or parametric forms.  Hence, a further assumption is made; that the redesign of 

such a model would also be organic, and not be restricted along rigid boundaries and 

parametric forms.  For future work, this dissertation proposes a new redesign process for 

non feature-based models.  The sections below describe a critical new concept for redesign 

called the Multi-Layer Visibility Map.         

Multi-Layer Visibility Map 

Visibility analysis is a very capable tool to analyze manufacturability for material 

removal processes and forming processes. Contemporary research on visibility relies on the 

concept of the unit sphere, on which both visibility and its complementary set, non-visibility, 
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are represented and manipulated as spherical surface patches. Computation of visibility on 

the unit sphere is then conducted on part of the unit sphere that is occupied by visibility 

patches. Current visibility based approaches implicitly assume the use of one-layer visibility 

on a unit sphere, where non-visibility areas are not distinguished.  

In Fig. 6.1, three non-visibility regions (represented by three different colors) from 

three obstacles are merged and it turns out that there is no visible direction on the hemisphere. 

Each invisible direction is treated equally in a single-layer visibility map. However in Fig. 

6.2, non-visible regions are distinguished and the intersections of non-visibility regions are 

identified. The intersections of non-visibility regions suggests that those directions are 

blocked by more than one layer of obstacles, and that in order to make them visible, a 

designer would need to modify more than one obstacle. This clearly illustrates that the single 

layer visibility map has the limitation of describing the potential effort involved in 

re-designing a CAD model, since it does not distinguish the magnitude of non-visibility.  

A multi-layer visibility map is constructed by mapping non-visibility cones from all 

obstacles on the surface of a unit sphere separately. Visible regions are left open; while 

non-visible regions are covered by one- or multi-layer patches. Such an approach allows the 

Fig. 6.1 Single-layer visibility map where sum is null set 

Fig. 6.2  Multi layer visibility map with multi layers of visibility 
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analysis of layers of obstacles that cause non-visibility.  A multi layer visibility map aims to 

differentiate non-visible directions with the magnitude of non-visibility; hence it would assist 

the designer to identify the potentially best method for modifying a design with the minimum 

amount of changes.  As an analogy, all neighboring co-workers in an office of cubicles may 

be invisible to a particular worker; however, some workers are more or less invisible, based 

on the number of cubicle walls between them.  Hence, there would be more or less work 

involved to make some particular pairs of workers visible to each other, based on how many 

walls would need to be moved. 

Re-design based on Multi-Layer Visibility Map 

Based on the proposed multi layer visibility map, a methodology of re-design for 

increased visibility should be developed as a re-design software module. This corresponds to 

the first manufacturability indicator – visibility. Upon the detection of non-visible regions, 

the re-design process will operate through the re-design module embedded into CAD/CAM 

software. The re-design process would entail two stages:  

      (1) Construction of multi layer visibility maps for selected non-visible regions of the 

CAD models.  

      (2) Uniform shrinking of non-visibility cones determines directions to improve 

visibility that require the least amount of surface changes (Fig. 6.3).   

      The uniform shrinking process will shrink each non-visibility cone inward, until a 

visible direction emerges. Such a direction is the accessible direction for material removal 

processes, with the least amount of surface changes. With the re-design module functioning 

as an interactive design mechanism, the designer could of course override this result and ask 

the re-design module to continue the uniform shrinking process to search for more favorable 

solutions.  
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Similar to what has been discussed in re-design for increased visibility, re-design for 

an axis of rotation could also be developed, intending to improve the visibility around an axis 

of rotation. The existence of axes of rotation is another measure to determine the 

manufacturability of a design. Re-design for axis of rotation will reduce the process planning 

effort and potential errors from re-fixturing the workpiece. Re-design for an axis of rotation 

is only required when no feasible axis is found.  Initially, it would be proposed that visibility 

will be restricted to be around the desired axis of rotation for this re-designing process (Fig. 

6.4).  This is based on the goal of making the minimum changes such that an axis of rotation 

becomes feasible.  

 

 

 

 

 

 

 

 

Fig. 6.3 Re-design for increased visibility 

Accessible direction requiring least amount of 

surface changes Uniform shrinking of non-visible regions 

Fig. 6.4 Re-design for 4-axis indexed machining 



www.manaraa.com

 
 

107

Bio-Embodied Multi-Layer Visibility Map 

As a particular application, a multi layer visibility map could find niche application in 

biomedical engineering, where it could be extended to an Embodied Multi-Layer Visibility 

Map to incorporate bio-information. Medical treatments targeted at internal organs, such as 

radiation therapy, require penetrating accessibility, which may make Multi-Layer Visibility 

Mapping a suitable tool. An Embodied Multi-Layer Visibility Map would be created by 

adding the dimensions of bio-information (e.g. attenuation of radiation beams, organ 

tolerance to radiation, etc.) onto each non-visible layer of the Multi-Layer Visibility Map. 

Similar to the re-designing process, Embodied Multi-Layer Visibility Maps will be 

constructed at selected point grids on morbid tissue. In contrast to the methods above, a 

non-uniform spherical shrinking process would be implemented on the Embodied 

Multi-Layer Visibility Map, because different layers of bio-structure are of different 

importance from a medical perspective (Fig. 6.5).  

 

 

 

 

 

 

 

 

 

This research would seek to create a tool used in the optimization of radiation therapy 

with minimum good tissue invasion.  

Examples of particular research tasks include:  

Creating Multi-Layer Visibility Map for shapes of organs from medical images 

 

Fig. 6.5 Embodied Multi-Layer Visibility Map 
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Embodying Multi-Layer Visibility Map with radiation-intensity tolerance of organs  

Selecting an optimal set of beam orientations to deliver dose of radiation therapy   

Conclusion 

In this dissertation, methods for computing three indicators of manufacturability are 

presented which are not dependent on feature recognition; therefore they can be applied to 

non feature-based objects. These three indicators are visibility, axis of rotation and geometric 

machinability. The computations of visibility and axis of rotation are conducted on facets of 

polygonal models.  Though STL files are used in this dissertation, the method itself is not 

limited to triangular-facetted polygonal models, but is applicable to arbitrary convex planar 

facets.  Similarly, the computation of geometric machinability was conducted on slices of 

polygonal models. As such, no feature recognition is required for any of the three indicators 

presented in this work. 

Computational results of these three manufacturability indicators can be used either 

alone or together in a hierarchical manner, to render manufacturability information to 

designers. Working hierarchically, the methodology starts from computing visibility which 

describes the potential manufacturability. The existence of visibility for each facet of a 

polygonal CAD model is the necessary condition for the later two stages of manufacturability 

analysis. Any non-visibility at this step could be used as feedback, informing the designer of 

a potential problem.  Upon confirmation of the existence of visibility, the manufacturability 

analysis process can then continue to the next stage; to evaluate accessibility on a specific 

machine setup.  In this work a 4-axis indexed machine setup is used, and the 

manufacturability translates to finding the existence of axes of rotation, which can guarantee 

visibility around the axes. The axes of rotation are mapped from visibility information 

through a rasterization process on the unit sphere. Inexistence of feasible axes of rotation 

may also suggest the need for more complex machining setups, such as 5-axis machining. 

The third step of the methodology is to compute geometric machinability, which is related to 
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the cutting tools and the specific cutting direction. At this stage, manufacturability is 

analyzed for the compatibility of the cutting tool shape and size with surfaces on the CAD 

model. Non-machinable regions can be determined with specific coordinates.  

The manufacturability analysis methods presented in this dissertation do not rely on 

feature analysis; however they are still applicable to feature-based models as long as the 

model is represented as a polygonal model. This allows manufacturability analysis of hybrid 

models that are comprised of both feature-based surfaces and other free-form surfaces.  

Currently, the manufacturability analysis methods are developed for a 4-axis indexed 

machining setup using flat end mills.  Extending the methodology to other machining setups 

and a general cutting tool could also be part of future work.  In closure, this dissertation 

should lay the groundwork for several new research efforts in feature-free manufacturability 

analysis, new methods to evaluate design problems, and practical applications that solve 

problems important to both industry and society.  
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